

DRV2667 Evaluation Module

The DRV2667 is a digital interface, high-voltage driver designed to control Piezo actuators with voltages between 40 Vpp and 200 Vpp. The DRV2667 eliminates many design complexities of driving Piezo by including an integrated 100-Vpp boost converter and 200-Vpp differential output amplifier. In addition, the digital control interface (I^2C TM) includes real-time waveform playback, a waveform generator, and embedded RAM for waveform storage.

The DRV2667EVM-CT Evaluation Module (EVM) kit is a complete demonstration and evaluation platform for the DRV2667. The kit includes a microcontroller, Piezo actuator, sample waveforms, and capacitive touch buttons which can be used to completely demonstrate and evaluate the DRV2667.

This document contains instructions for setup and operation of the DRV2667EVM-CT, as well as an in-depth description and examples of haptic waveforms for Piezo actuators.

Evaluation kit contents

- DRV2667EVM-CT demonstration and evaluation board
- Mini-USB cable

Tools needed for programming and advanced configuration

- Code Composer StudioTM (CCS) or IAR Embedded Workbench IDE for MSP430
- MSP430 LaunchPad (MSP-EXP430G2) or MSP430-FET430UIF hardware programming tool
- DRV2667EVM-CT firmware

WARNING

**This evaluation board contains high voltages, up to 200 Vpp.
Please use the necessary precautions when using this board.**

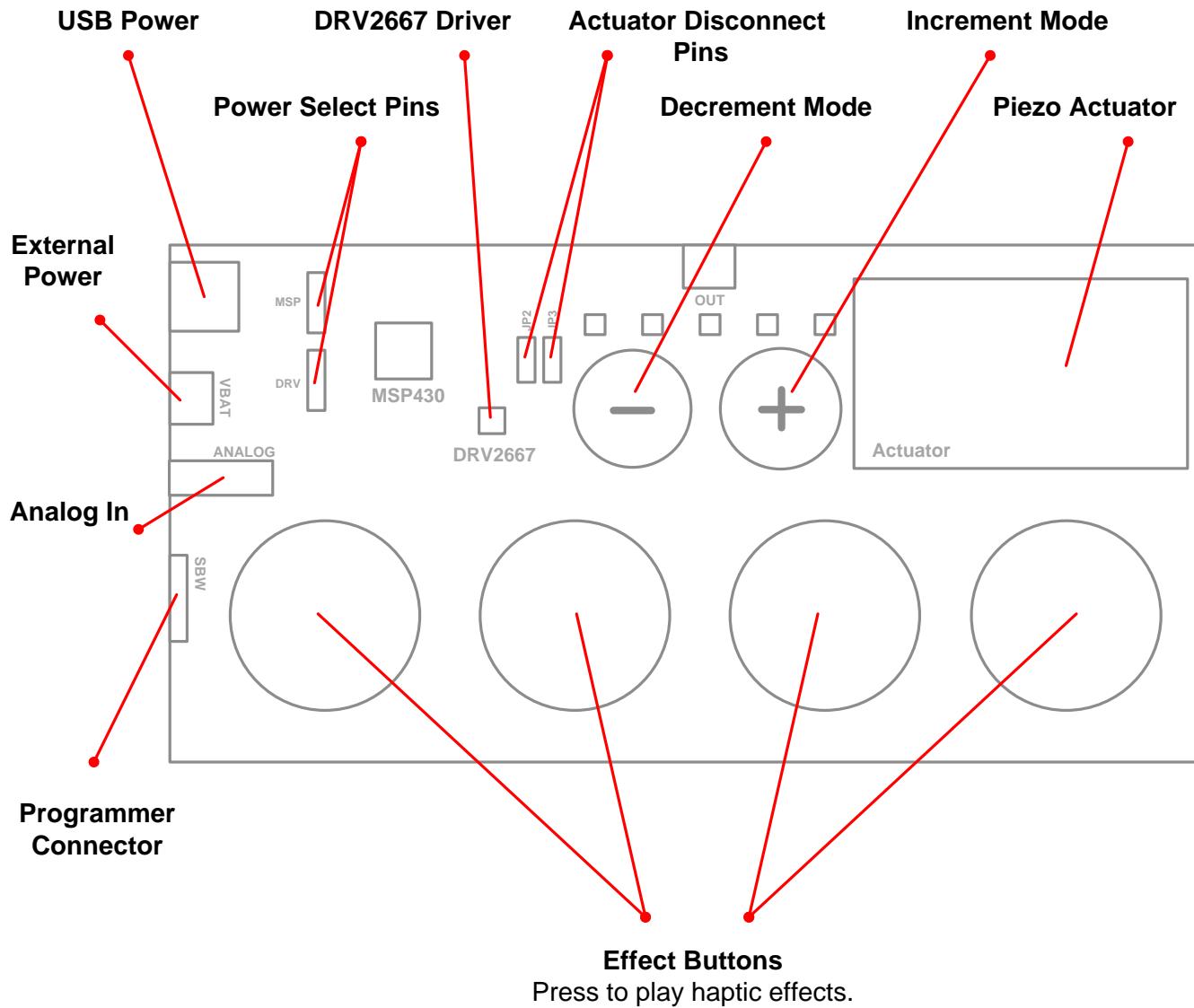
Contents

1	Getting Started	4
1.1	Evaluation Module Operating Parameters	5
1.2	Quick-Start Board Setup	5
2	DRV2667 Embedded Software	6
2.1	Demo Mode	7
2.2	Demo Mode Descriptions	8
2.3	RAM Library Mode	14
2.4	RAM Library Effects List	14
2.5	Design & Test Mode	14
2.6	Return to Demo Mode	16
3	Hardware Configuration	17
3.1	Input and Output Overview	17
3.2	Power Supply	17
3.3	External Actuator	18
3.4	External I ² C Input	18
3.5	Analog/PWM Input	19
3.6	Programming the Boost Converter	19
4	MSP430 Control and Firmware	23
4.1	Modifying and Loading Firmware	23
4.2	MSP430 Pin-Out	25
5	Schematic, Printed-Circuit Board Layouts, and Bill of Materials	26
5.1	Schematics	26
5.2	PCB Layouts	27
5.3	Bill of Materials	30

List of Figures

1	Board Diagram	4
2	DRV2667EVM-CT Mode Sets	6
3	B1 – Alert 1	8
4	B1 – Alert 1 Continuous Repeat	8
5	B2 – Alert 2	8
6	B2 – Alert 2 Continuous Repeat	8
7	B3 – Alert 3	9
8	B3 – Alert 3 Continuous Repeat	9
9	B4 – Alert 4	9
10	B4 – Alert 4 Continuous Repeat	9
11	B2 – Click and Release 1	10
12	B2 – Click and Release 2	10
13	Ramp and Release	10
14	B1 – Ramp Up	11
15	B3 – Click Bounce	11
16	B4 – Pulse	11
17	B1 – Sharp Click Using FIFO	12
18	B2 – Bump using FIFO	12
19	B4 – Robotic Click using RAM	12
20	B3 – Audio In	13
21	DRV2667EVM-CT Power Diagram	17
22	Output Terminal Block and Test Points	18
23	External I ² C Input	18
24	External Analog/PWM Input	19
25	Boost Voltage Programming Resistors	20

26	DRV2667EVM-CT LaunchPad Connection	24
27	DRV2667EVM-CT Schematic.....	26
28	DRV2667EVM-CT Top Silkscreen	27
29	DRV2667EVM-CT Top Copper	27
30	DRV2667EVM-CT Copper Layer 2	28
31	DRV2667EVM-CT Copper Layer 3	28
32	DRV2667EVM-CT Bottom Copper Layer	29


List of Tables

1	EVM Operating Parameters	5
2	Default Jumper Settings.....	5
3	DRV2667EVM-CT Demo Mode	7
4	DRV2667EVM-CT Library Modes	14
5	DRV2667EVM-CT Binary Modes.....	15
6	Hardware Overview	17
7	Power Supply Configuration Options	17
8	Boost Voltage using MSP430 GPIO Control.....	20
9	Boost Voltage and Gain Settings (R1 and R2 Only).....	21
10	Boost Converter Inductor Selection	21
11	MSP430 Pin-Out.....	25
12	DRV2667EVM-CT Bill of Materials	30

1 Getting Started

The DRV2667EVM-CT can be used as a demonstration and evaluation tool. The DRV2667EVM-CT comes pre-programmed with a basic demonstration program that includes sample haptic waveforms to use with the on-board actuator.

To begin, power the board by connecting the DRV2667EVM-CT to an available USB port using the included mini-USB cable. The board begins with a power-up sequence, and finishes by entering Demo mode. In Demo mode, the four larger buttons (B1–B4) are used to sample haptic effects with the on-board Piezo in the top-right corner. The two smaller mode buttons (–, +) are used to change between the different modes or sets of effects. See [DRV2667 Demonstration Program](#) for a more detailed description.

Figure 1. Board Diagram

1.1 Evaluation Module Operating Parameters

Table 1 lists the operating conditions of the DRV2667. More detailed information can be found in the DRV2667 datasheet on ti.com (<http://www.ti.com/product/drv2667>).

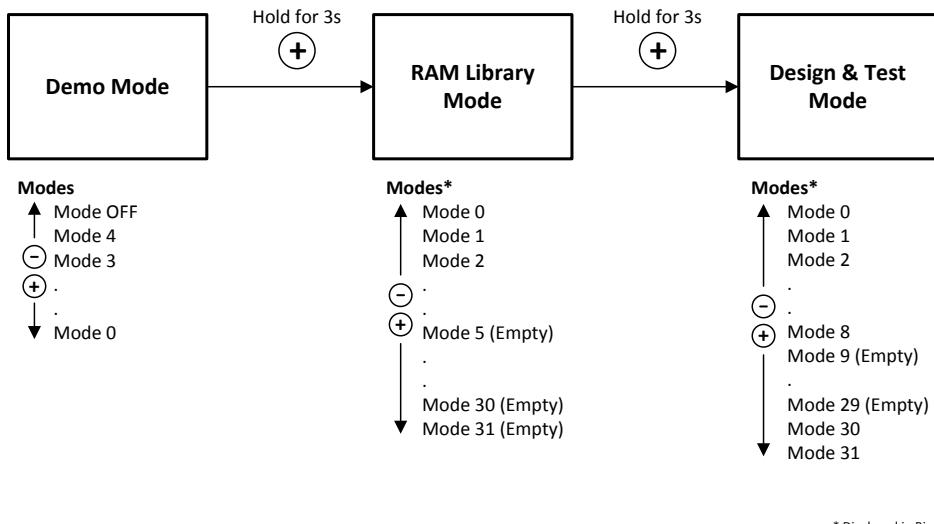
Table 1. EVM Operating Parameters

Parameter	Specification
Supply voltage range	3.0 V to 5.5 V
Power supply current rating	700 mA

1.2 Quick-Start Board Setup

The DRV2667EVM-CT firmware contains sample haptic waveforms which showcase the features and benefits of the DRV2667. See the instructions below to power the board and begin using Demo mode.

1. Out of the box, the jumpers are set to begin demo mode using USB power. The default jumper settings are found in [Table 2](#).


Table 2. Default Jumper Settings

Jumper	Default Position	Description
JP1	Shorted	3.3-V reference for I ² C
JP2, JP3	Shorted	Connect the on-board actuator to the DRV2667
MSP	USB to MSP	Selects USB (5 V) for the MSP430 power rail
DRV	USB to DRV	Selects USB (5 V) for the DRV2667 power rail

2. Connect the mini-USB cable (included) to the USB connector on the DRV2667EVM-CT board.
3. Connect the other end of the USB cable to an available USB port on a computer, USB charger, or USB battery pack.
4. If the board is powered correctly, the four colored LEDs will light, the four mode LEDs will flash, and the Piezo will buzz, indicating the board has been successfully initialized.

2 DRV2667 Embedded Software

The DRV2667EVM-CT contains a microcontroller with embedded software to operate and control the board. The software consists of multiple sets of modes and effects that showcase the features of the DRV2667 driver. There are three sets of modes that are accessed by pressing and holding the "+" button. The diagram below shows how to access the different sets.

Figure 2. DRV2667EVM-CT Mode Sets

Set Descriptions:

1. Demo Mode – contains a set of pre-designed effects that use the features of the DRV2667. This mode is great for demonstrating the DRV2667.
2. RAM Library Mode – a library created and stored in the RAM of the DRV2667. Library mode implements a RAM-based library of effects that are triggered by the MSP430 microcontroller.
3. Design & Test Mode – a set of modes used to build waveforms, perform life tests, and control the DRV2667 externally.

2.1 Demo Mode

The demo effects are listed in [Table 3](#). The modes are selected using the “-” and “+” mode buttons in the center of the board. The current mode is indicated by the white LEDs directly above the mode buttons. Buttons B1–B4 trigger the effects listed in the description column and change based on the current mode.

Table 3. DRV2667EVM-CT Demo Mode

Mode	Button	Description	Notes
Mode Off LEDs Off	B1	Alert 1	Mode 3 – Waveform generation
	B2	Alert 2	
	B3	Alert 3	
	B4	Alert 4	
Mode 4 LED M4 On	B1	Short click	Mode 3 – Waveform generation
	B2	Click and release 1	
	B3	Click and release 2	
	B4	Ramp and release	
Mode 3 LED M3 On	B1	Ramp up (200 Hz)	Mode 3 – Waveform generation
	B2	Bounce (250 Hz)	
	B3	Click bounce	
	B4	Pulse (hold to repeat)	
Mode 2 LED M2 On	B1	Sharp click	Mode 1 – FIFO
	B2	Bump	
	B3	Alert	
	B4	Robotic (two-tone) click	Mode 2 – RAM mode
Mode 1 LED M1 On	B1	Concentration/Simon game	Mode 3 – Waveform generation
	B2		
	B3		
	B4		
Mode 0 LED M0 On	B1	28.8 dB, 50 Vpp, Boost = 30 V	Analog Input – Press a button to set the gain, voltage and enable the part for analog input. Disable by changing modes.
	B2	34.8 dB, 100 Vpp, Boost = 55 V	
	B3	38.4 dB, 150 Vpp, Boost = 80 V	
	B4	40.7 dB, 200 Vpp, Boost = 105 V	

2.2 Demo Mode Descriptions

The modes and effects in [Table 3](#) are described in the following sections. Use this as a starting point for creating your own waveforms.

2.2.1 Mode Off – Alert Effects

The effects in Mode Off are basic alert effects that use the DRV2667 waveform generator. The waveform generator reduces the demand of the host processor by creating the output waveform based on five parameters set in the DRV2667 register map. This eliminates the need for the host processor to output waveform samples continuously. The only thing the host processor must do is “trigger” the waveform.

For effects that repeat continuously, simply program the DRV2667 to repeat the waveform and then “trigger” the waveform; once triggered, the waveform will repeat continuously until stopped.

The following waveforms are generated when buttons B1–B4 are pressed.

Button B1 – Alert 1

Alert 1 is a single waveform that produces a bump or buzz feel.

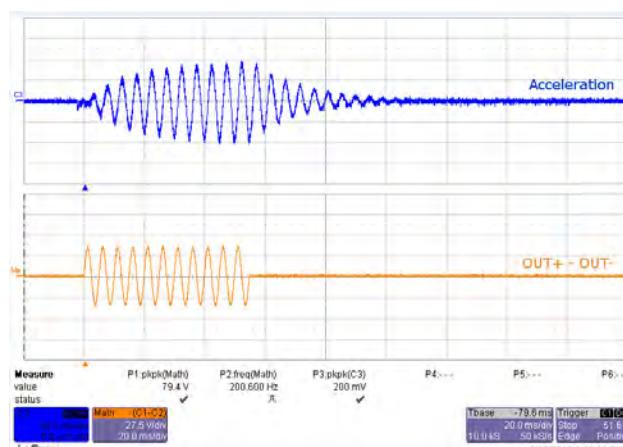


Figure 3. B1 – Alert 1

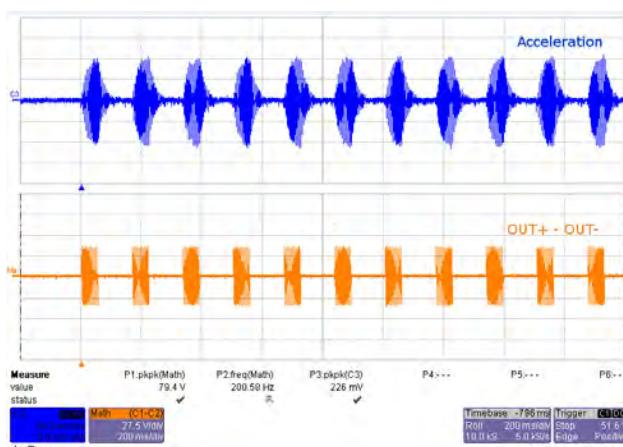


Figure 4. B1 – Alert 1 Continuous Repeat

Button B2 – Alert 2

Alert 2 is a sequence of two waveforms that produces a buzz and click waveform.

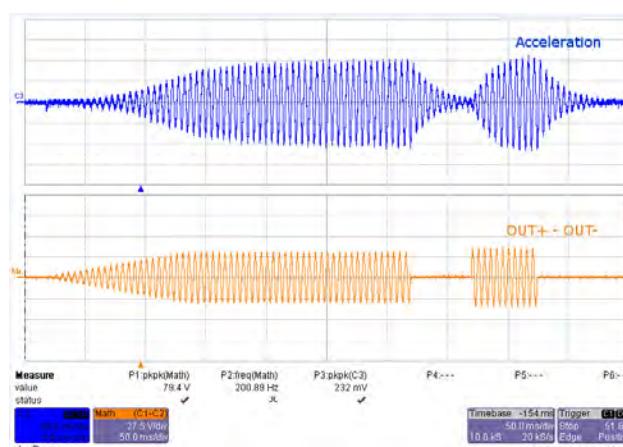
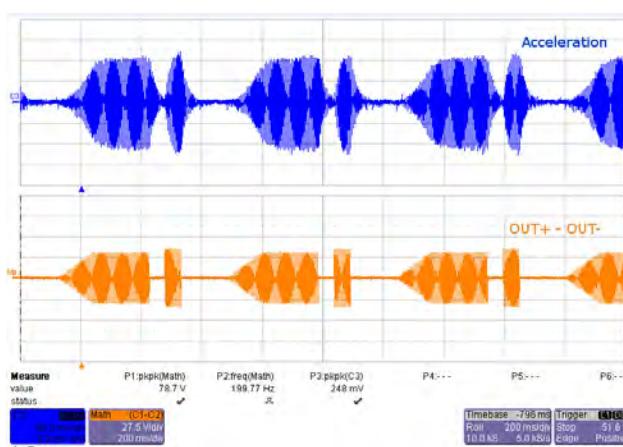
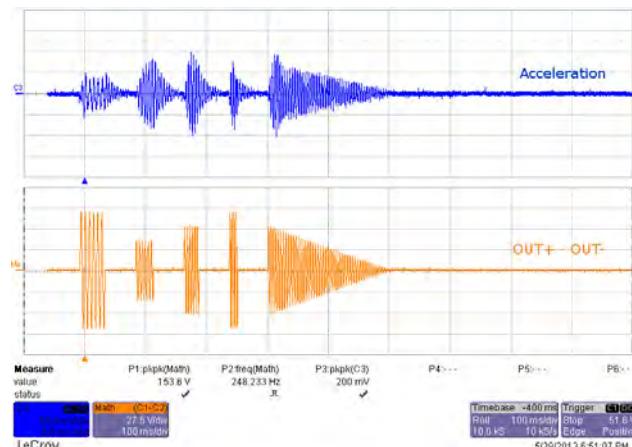
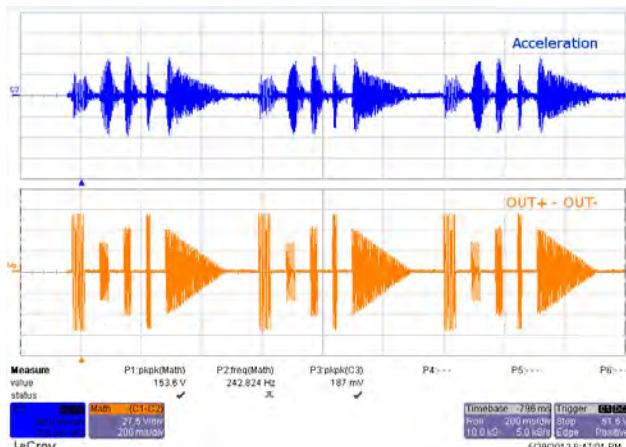


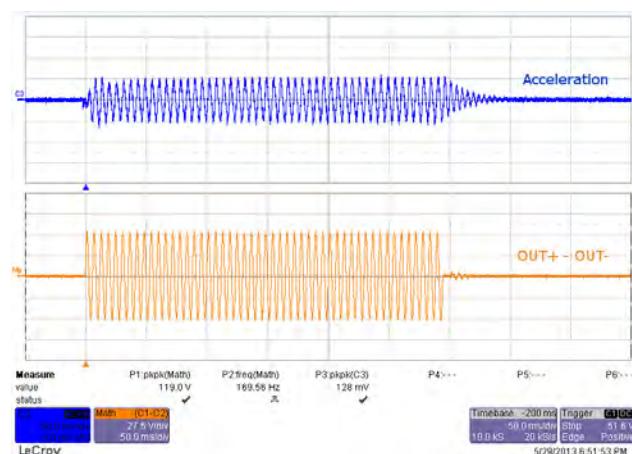
Figure 5. B2 – Alert 2

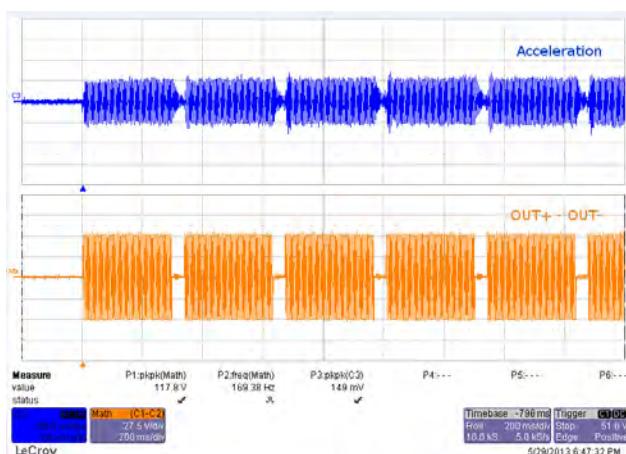




Figure 6. B2 - Alert 2 Continuous Repeat

Button B3 – Alert 3

Alert 3 is a sequence of five waveforms that produces a gallop like feel.


Figure 7. B3 – Alert 3


Figure 8. B3 – Alert 3 Continuous Repeat

Button B4 – Alert 4

Alert 4 is a single waveform that produces a buzz.

Figure 9. B4 – Alert 4

Figure 10. B4 – Alert 4 Continuous Repeat

2.2.2 Mode 4 – Click and Release Effects

The effects in Mode 4 are clicks and click and release effects. A click and release effect produces a click feel when the button is pressed and another click when the button is released.

Button B2 – Click and Release

The click and release effect on button B2 is shown in the two images below. In [Figure 11](#), the release is nearby the press click, because the button was pressed and released quickly. In [Figure 12](#), the release is further from the press click, because the button was released slower.

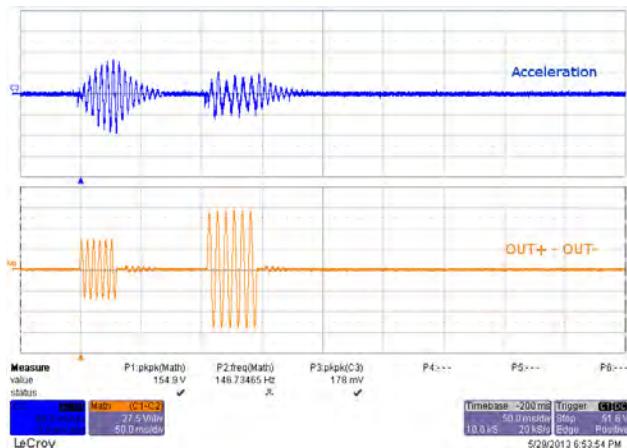


Figure 11. B2 – Click and Release 1

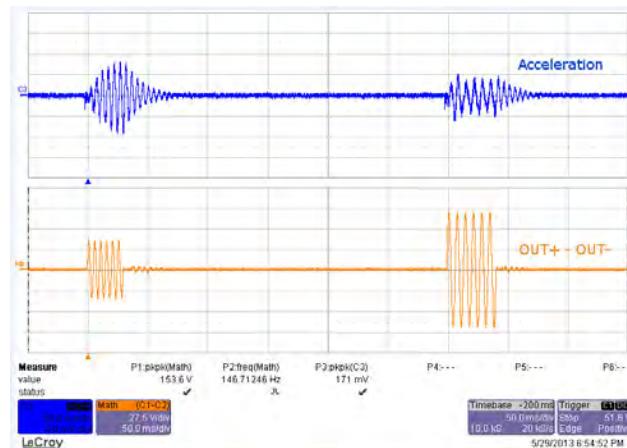
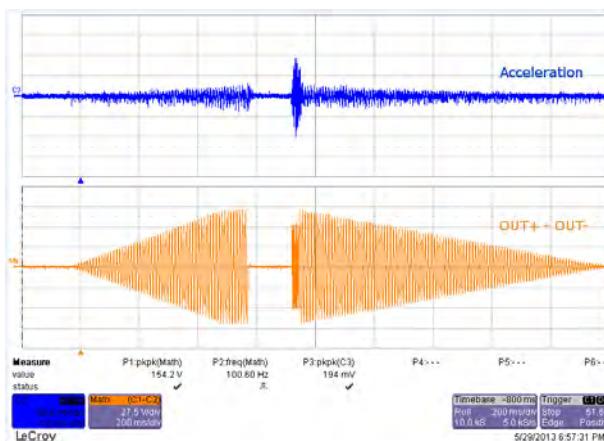
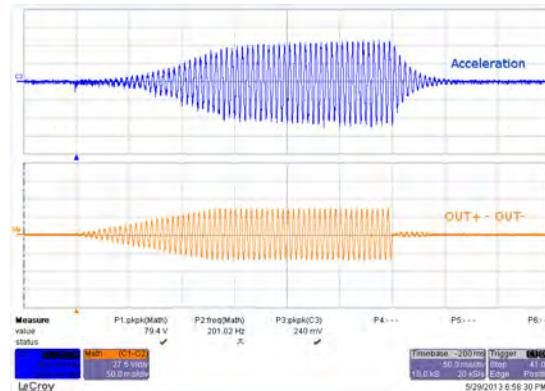


Figure 12. B2 – Click and Release 2

Button 4 – Ramp and Release

The effect on button four is a ramp and release effect. When the button is pressed the waveform ramps up and when released it ramps down.




Figure 13. Ramp and Release

2.2.3 Mode 3 – Gaming Effects

The effects in mode 3 are unique effects that can be used for gaming.

Button 1 – Ramp Up

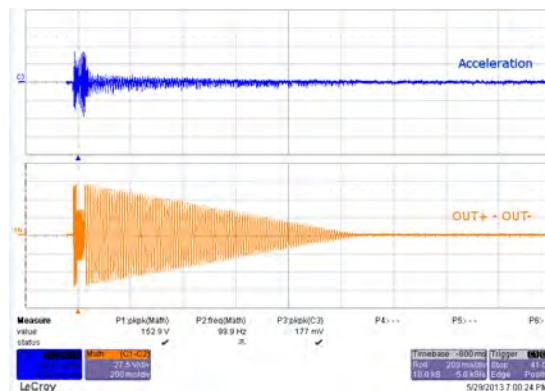

Button 1 is a ramp up waveform which can be easily programmed using the waveform generator.

Figure 14. B1 – Ramp Up

Button 2 – Click Bounce

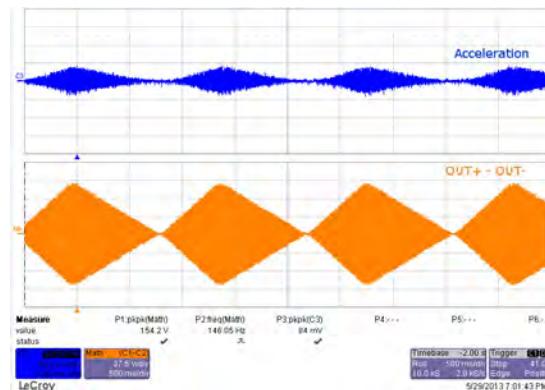

Button 2 consists of two waveforms, a click, and then a ramp down. This produces a click bounce feel.

Figure 15. B3 – Click Bounce

Button 4 – Pulse

Button 4 consists of two waveforms a ramp up and ramp down. This produces a pulsating effect.

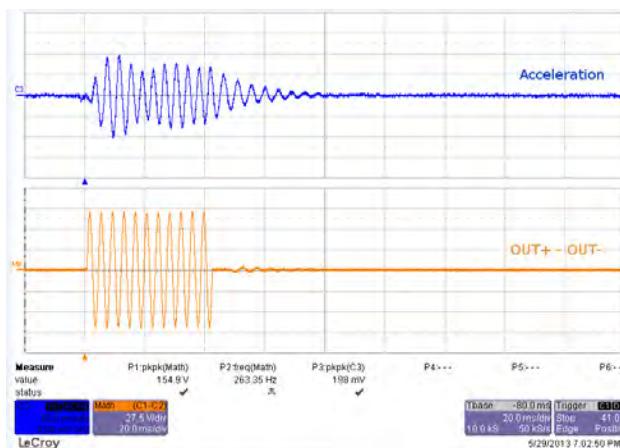
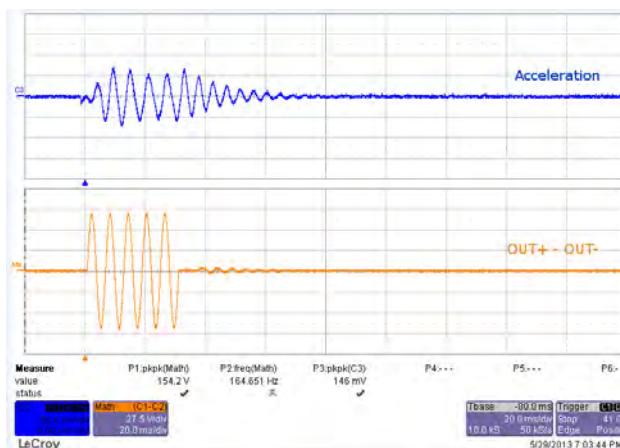


Figure 16. B4 – Pulse


2.2.4 Mode 2 – FIFO and RAM Effects

The effects in Mode 2 are very similar to the previous modes; however, they do not use the DRV2667 waveform generator. Instead they use either the FIFO streaming mode or the internal RAM. The advantage of using FIFO or RAM is that the waveforms can be completely arbitrary.

In [Figure 17](#) and [Figure 18](#), the click and bump were created using FIFO mode.

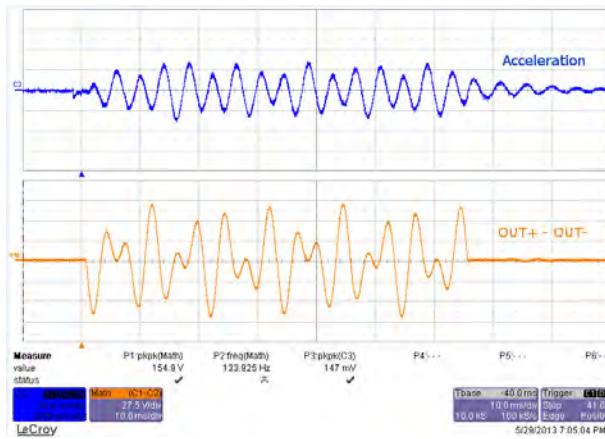


Figure 17. B1 – Sharp Click Using FIFO

Figure 18. B2 – Bump using FIFO

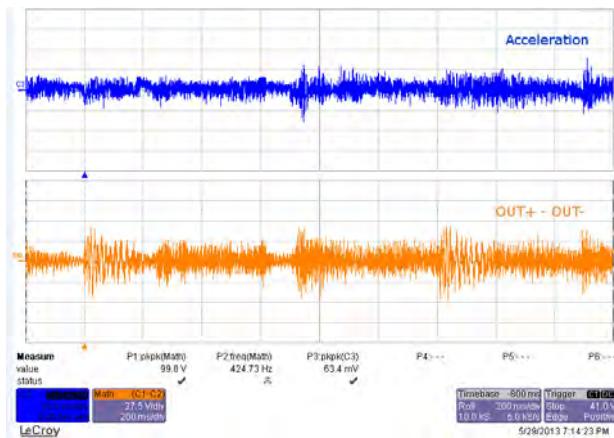
If you choose to use the embedded RAM you can create waveforms like the two-tone robotic click waveform in [Figure 19](#).

Figure 19. B4 – Robotic Click using RAM

2.2.5 Mode 1 – Concentration Game

Mode 1 is a game that incorporates the various Piezo effects. This can be used to demonstrate haptics in a real application.

To begin playing Concentration:


1. Press any of the large effect buttons.
2. The game will then count down.
3. Once the countdown completes, a button will turn on and an effect will play.
4. Repeat the pattern by pressing the same button.
5. After each successfully repeated pattern, the board will repeat the same pattern and add one additional button to the sequence.

2.2.6 Mode 0 – Analog or Audio Input

Mode 0 allows you to connect an analog input source to the DRV2667EVM-CT. See [Analog/PWM Input](#) for the hardware configuration.

This shows the advantage of Piezo over other actuator technologies. Piezo actuators have a much faster response time than ERM and LRA actuators, so the Piezo actuator can be driven with an analog or audio signal and reproduce the input frequencies well.

[Figure 20](#) is an illustration of an audio signal producing vibration on the Piezo actuator.

Figure 20. B3 – Audio In

2.3 RAM Library Mode

The second set of modes is called *Library Mode*, which implements a haptic effect library using the DRV2667 RAM. The effects in RAM are accessed in sequential order using the capacitive touch buttons. For example, with all Mode LEDs off, B1 is waveform 1, B2 is waveform 2, and so on. Then when Mode LED M0 is on, B1 is waveform 5, B2 is waveform 6, and so on. Enter *Library Mode* and access the DRV2667 RAM Library using the following steps:

1. Press and hold the increment mode button ("+") for approximately 3 seconds until the mode LEDs flash and the colored LEDs flash once.
2. Now use the "+" and "-" buttons to select the mode and press buttons B1–B4 to play an effect.

The equations for calculating the Mode and Button of an effect are:

$$\text{Mode} = \text{RoundDown}(\text{[Effect No.] / 4}) \quad (1)$$

$$\text{Button} = ([\text{Effect No.}] - 1) \% 4 + 1 \quad (2)$$

% – modulo operator

See [Table 4](#) for a list effects stored in the DRV2667 RAM.

2.4 RAM Library Effects List

[Table 4](#) is a description of the effects stored in the DRV2667 RAM.

Table 4. DRV2667EVM-CT Library Modes

Effect ID	Waveform Name
1	Click150
2	Click200
3	Click250
4	Click300
5	Bounce100
6	Bounce150
7	Bounce200
8	Bounce250
9	Transition100
10	Transition150
11	Transition200
12	Transistion250
13	Click + Bounce
14	Transition + Click
15	Flyby
16	Long Click + Bounce
17	Alert 1
18	Alert 2
19	Alert 3
20	Alert 4

2.5 Design & Test Mode

Design & Test contains modes that are used to design, test, and characterize the DRV2667. To access *Design & Test* modes use the following instructions:

1. Press and hold the increment mode button ("+") for approximately 3 seconds until the mode LEDs flash and the colored LEDs flash once.
2. Press and hold the increment mode button ("+") one more time until the mode LEDs flash and the colored LEDs flash twice.
3. Select from the *Design & Test* modes using the "+" and "-" buttons.

Table 5 lists the modes available for design and testing.

Table 5. DRV2667EVM-CT Binary Modes

Mode	Button	Description	Notes
Mode 0 GUI Mode LEDs: 00000	B1	Memory store enabled	GUI Mode – use this mode to trigger and store the sequencer set by a GUI. Store the sequencer by first pressing B1 (the mode LEDs turn on). Then press either B2 or B3, storing the sequencer values. Press B1 again to exit memory storage. B4 triggers the active sequencer.
	B2	Store/Play memory 1	
	B3	Store/Play memory 2	
	B4	Trigger active sequencer	
Mode 1 Dynamic Waveform Playback LEDs: 00001	B1	Disable	Effect Building Modes 1–6 can be used to create a unique effect by adjusting the frequency, amplitude, duration, and envelope of a single waveform. Button B1 in each mode is a continuous buzz with the frequency set in mode 2 and the amplitude set in mode 3. Button 2 in each mode is the effect created using the frequency, amplitude, duration, and envelope set by the respective modes. It is recommended to use an oscilloscope to measure the output when creating effects.
	B2	Play effect once	
	B3	Infinite playback	
	B4	Infinite playback with 1-s wait	
Mode 2 Frequency Adjust LEDs: 00010	B1	Continuous buzz	Create a Waveform 1) Select the frequency using B3 and B4 in Mode 2 2) Select the amplitude using B3 and B4 in Mode 3 3) Select the duration using B3 and B4 in Mode 4 4) Select the ramp up time using B3 and B4 in Mode 5 (Default is 0) 5) Select the ramp down time using B3 and B4 in Mode 6 (Default is 0)
	B2	Dynamic effect	
	B3	Decrease frequency	
	B4	Increase frequency	
Mode 3 Amplitude Adjust LEDs: 00011	B1	Continuous buzz	Waveform Playback (Mode 1)* Use Mode 1 to playback the waveform created above. B2 – Play the effect once B3 – Continuously repeat the effect B4 – Continuously repeat the effect with a 1-s pause in between * Mode 1 is used for conducting a life test
	B2	Dynamic effect	
	B3	Decrease amplitude	
	B4	Increase amplitude	
Mode 4 Duration Adjust LEDs: 00100	B1	Continuous buzz	
	B2	Dynamic effect	
	B3	Decrease duration	
	B4	Increase duration	
Mode 5 Ramp Up Adjust LEDs: 00101	B1	Continuous buzz	
	B2	Dynamic effect	
	B3	Decrease ramp up	
	B4	Increase ramp up	
Mode 6 Ramp Down Adjust LEDs: 00110	B1	Continuous buzz	
	B2	Dynamic Effect	
	B3	Decrease Ramp Down	
	B4	Increase Ramp Down	
Mode 7 Analog Input LEDs: 00111	B1	28.8 dB, 50 Vpp, Boost = 30 V	Analog Input – Press a button to set the gain, voltage, and enable the part for analog input. Disable by changing modes.
	B2	34.8 dB, 100 Vpp, Boost = 55 V	
	B3	38.4 dB, 150 Vpp, Boost = 80 V	
	B4	40.7 dB, 200 Vpp, Boost = 105 V	
Mode 8 Recorder LEDs: 01000	B1	Begin recording	Recorder – use this mode to create a single amplitude pattern. Start by pressing the record button (B1), then use B2 to create the pattern by tapping the button. When finished, press the playback button (B3).
	B2	Create pattern	
	B3	Playback	
	B4		
Mode 30 Default Gain & Boost Voltage LEDs: 11110	B1	28.8 dB, 50 Vpp, Boost = 30 V	Default Gain & Boost Voltage – Use this mode to set the default gain and boost voltage used by the other modes. Select a gain and boost voltage setting by pressing buttons B1–B4. The setting is saved until changed or the board is powered down.
	B2	34.8 dB, 100 Vpp, Boost = 55 V	
	B3	38.4 dB, 150 Vpp, Boost = 80 V	
	B4	40.7 dB, 200 Vpp, Boost = 105 V	
Mode 31 About the Board LEDs: 11111	B1	Device ID	About the Board – the value appears on the mode LEDs in binary.
	B2	Silicon revision	
	B3	Code revision	
	B4		

2.6 Return to Demo Mode

To exit *Library Mode* or *Design & Test Mode* and return to *Demo Mode*:

1. Press and hold the decrement mode button ("–") for approximately 3 seconds.
2. Release the button when the actuator buzzes and the mode LEDs flash.
3. Select from the *Demo* modes using the "+" and "–" buttons.

3 Hardware Configuration

The DRV2667EVM-CT is very flexible and can be used to completely evaluate the DRV2667. The following sections list the various hardware configuration options.

3.1 Input and Output Overview

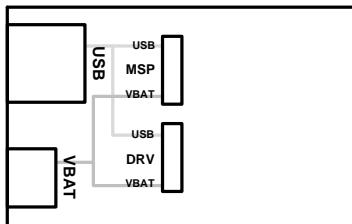

The DRV2667EVM-CT allows for complete evaluation of the DRV2667 through the use of test points, jacks, and connectors. [Table 6](#) gives a brief description of the hardware.

Table 6. Hardware Overview

Signal	Description	I/O
Analog	Optional analog input to DRV2667 IN+/IN- Pins	Input
I ² C	MSP430 and DRV2667 I ² C Bus	Input/Output
OUT+/OUT-	Output test points for test and measurement	Output
OUT	Output terminal block to connect actuator	Output
SBW	MSP430 programming header	Input/Output
USB	USB power (5 V)	Power
VBAT	External Supply Power (3.0 V–5.0 V)	Power

3.2 Power Supply

The DRV2667EVM-CT can be powered by USB or an external power supply (VBAT). Jumpers *DRV* and *MSP* are used to select the supply for the DRV2667 and the MSP430G2553, respectively. See the [Table 7](#) for configuration options.

Figure 21. DRV2667EVM-CT Power Diagram

Table 7. Power Supply Configuration Options ⁽¹⁾

Supply Configuration	DRV	MSP	DRV2667 Supply Voltage
USB – Both	USB	USB	5 V
DRV2667 External Supply, MSP430 USB	VBAT	USB	VBAT (3.0–5.5 V)
External Supply – Both	VBAT	VBAT	VBAT (3.0–5.5 V)

⁽¹⁾ The DRV2667 should be enabled before enabling the MSP430. I²C transactions do not work when the DRV2667 is powered down.

3.3 External Actuator

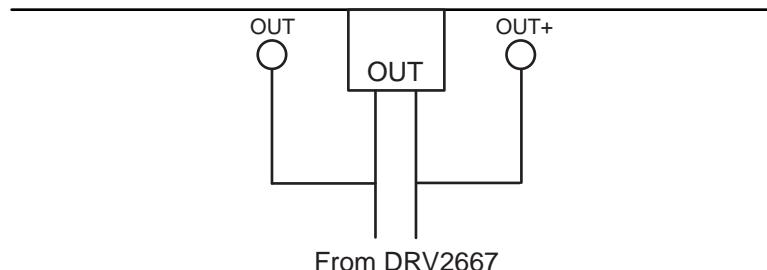


Figure 22. Output Terminal Block and Test Points

The DRV2667EVM-CT can be used with an external actuator. Follow the instructions below to attach an actuator to the *OUT* terminal block.

1. Ensure the board is powered down.
2. Remove jumpers JP2 and JP3, which disconnects the on-board actuator.
3. Attach the positive and negative leads of the actuator to the green *OUT* terminal block.
4. Screw down the terminal block to secure the actuator leads.

WARNING

Before connecting a load, ensure that the Piezo actuator (or other load) is rated for 150 Vpp. If not, see [Programming the Boost Converter](#) to adjust the DRV2667 maximum output voltage.

3.4 External I²C Input

Figure 23 is an illustration of the external I²C input.

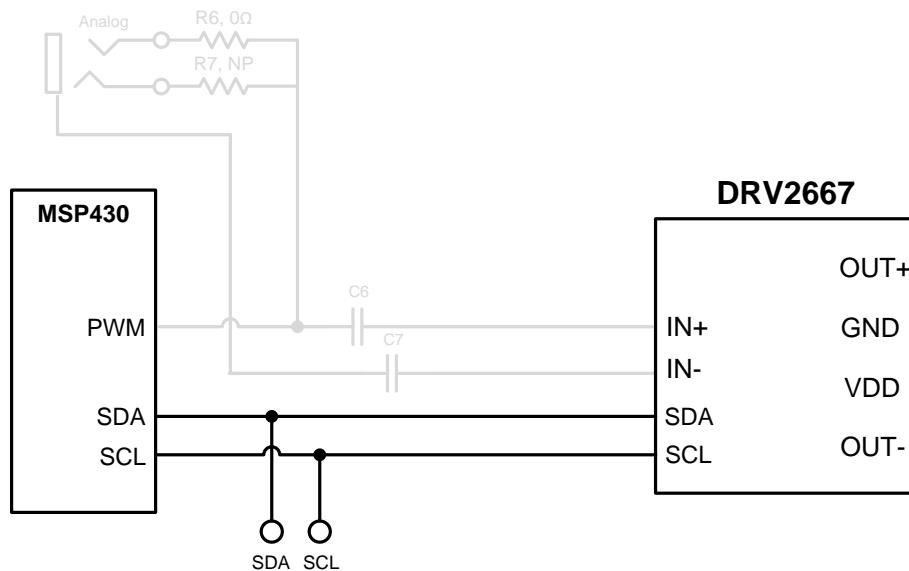
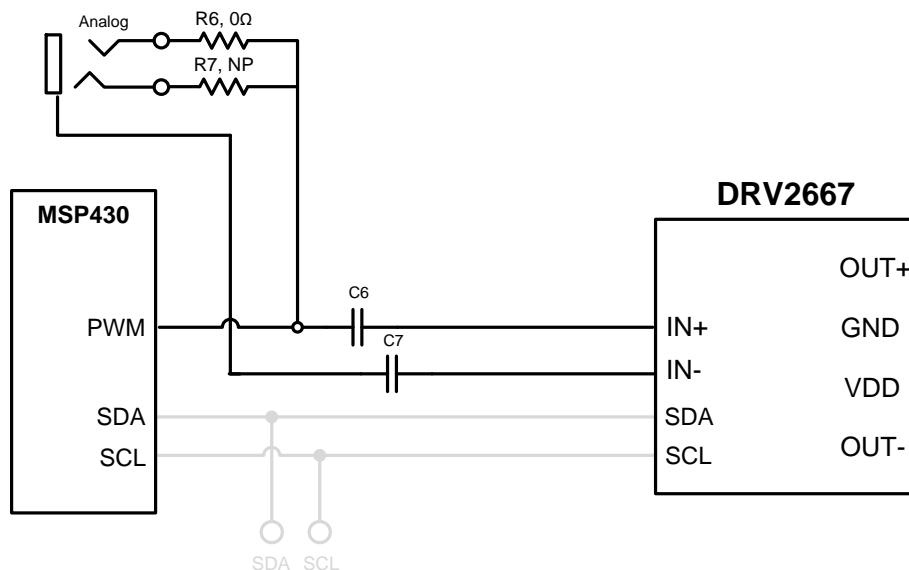


Figure 23. External I²C Input


The DRV2667 can be controlled by an external I²C source. To control externally, attach the external controller to the I²C header at the top of the board; be sure to connect SDA, SCL, and GND from the external source. If the DRV2667EVM-CT is powered, the DRV2667 will be ready to accept I²C transactions.

There is also a special mode in the *Design & Test* set that allows you to save the DRV2667's sequencer registers settings for playback at a later time. To store the sequencer:

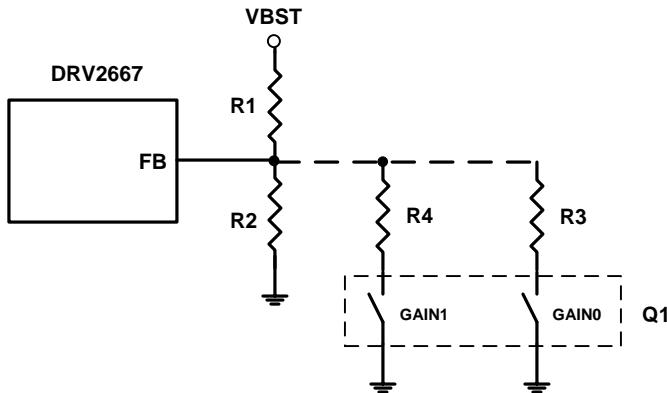
1. Enter *Design & Test Modes*. Select Mode 0 – GUI Mode (00000'b) using the increment mode button ("+").
2. Press the **B1** button to enter storage mode. (The mode LEDs will all turn on.)
3. Press the **B2** or **B3** button to save the current sequencer to the respective button.
4. Press the **B1** button again to exit storage mode. (The mode LEDs will all turn off.)
5. Press either the **B2** or **B3** button to reload the DRV2667 sequencer with the saved sequence and play.

3.5 Analog/PWM Input

Figure 24 is an illustration of the external analog and PWM input.

Figure 24. External Analog/PWM Input

The DRV2667EVM-CT accepts analog or PWM inputs for the analog IN+/IN- pins of the DRV2667. To use the IN+/IN- pins of the DRV2667 follow the instructions below:


1. Enter *Design & Test Modes*. Select Mode 7 (00111'b) using the increment mode button ("+").
2. Select the gain and voltage using buttons B1–B4:
 - B1 – 28.8 dB, 50 Vpp
 - B2 – 34.8 dB, 100 Vpp
 - B3 – 38.4 dB, 150 Vpp
 - B4 – 40.7 dB, 200 Vpp
3. Turn on the signal source to begin output.

3.6 Programming the Boost Converter

The integrated boost converter provides the necessary voltage to drive 200 Vpp. The boost converter is applied differentially across the load to achieve output voltage of two times the boost voltage. The DRV2667 maximum output voltage should be adjusted so that it does not exceed the maximum rated voltage of the load. This not only prevents damage to the load, but also helps improve efficiency. To adjust the output voltage, adjust the boost converter voltage and DRV2667 internal gain settings using the instructions in [Section 3.6.1](#) to [Section 3.6.2](#).

3.6.1 Adjusting the Boost Voltage Using Software

The boost output voltage (VBST) is programmed by two external feedback resistors R1 and R2, as shown in the [Figure 25](#). The DR2667EVM-CT includes two additional resistors, R3 and R4, which allow the MSP430 to programmatically adjust VBST using a combination of the four resistors to produce four different voltage levels. Refer to [Table 8](#) for VBST at each gain setting and the equivalent low-side resistance.

Figure 25. Boost Voltage Programming Resistors

NOTE: Remove R3 and R4 if adjusting VBST using resistors R1 and R2.

Table 8. Boost Voltage using MSP430 GPIO Control

GAIN1	GAIN0	V _{FB} Low-Side Resistance	VBST
0	0	35.7 kΩ	30
0	1	19.1 kΩ	54
1	0	12.8 kΩ	80
1	1	9.8 kΩ	105

To change the default boost voltage on the DR2667EVM-CT using the embedded software, follow the instructions below:

1. Enter *Design & Test Modes*.
2. Select Mode 30 (11110'b) using the increment mode button ("+").
3. Select the gain and voltage using buttons B1–B4:
 - B1 – 28.8 dB, 50 Vpp
 - B2 – 34.8 dB, 100 Vpp
 - B3 – 38.4 dB, 150 Vpp
 - B4 – 40.7 dB, 200 Vpp
4. Exit Mode 30 and use the board as normal.

NOTE: the DR2667EVM-CT will revert to the original voltage setting (150 Vpp) on power down.

3.6.2 Adjusting the Boost Voltage Using Hardware

The boost voltage is adjustable using the two GPIOs; GAIN1 and GAIN0, in code. In most applications, however, the boost voltage is fixed so R3 and R4 are not necessary and the boost voltage can simply be set by R1 and R2. To replace R1 and R2, first remove R3 and R4 and use [Equation 3](#) to calculate the boost output voltage.

$$V_{\text{BOOST}} = V_{\text{FB}} \left(1 + \frac{R_1}{R_2} \right) \quad (3)$$

where $V_{\text{FB}} = 1.32$ V.

[Table 9](#) shows the typical values for R1 and R2 and the corresponding output voltages.

Table 9. Boost Voltage and Gain Settings (R1 and R2 Only)

R1	R2	GAIN1	GAIN0	VBST	Vout (Peak to Peak)
402 kΩ	18.2 kΩ	0	0	30	50
392 kΩ	9.76 kΩ	0	1	55	100
768 kΩ	13 kΩ	1	0	80	150
768 kΩ	9.76 kΩ	1	1	105	200

The maximum boost output voltage is 105 V. Program VBST to a value 5 V greater than the largest peak voltage expected in the system to allow adequate amplifier headroom. Because the programming range for the boost voltage extends to 105 V, the current through the resistor divider can become significant. The sum of the feedback resistors R1 and R2 should be greater than 500 kΩ.

NOTE: When the feedback resistor values are greater than 1 MΩ, PCB contamination may cause boost voltage inaccuracies. Keep the board clean from excess solder and flux when modifying.

3.6.3 Boost Current Limit

The peak inductor current is set by resistor R5 (R_{EXT}). The current limit is not a safety mechanism, but the highest value current the inductor sees each cycle. The inductor must be capable of handling this programmed limit during normal operation. This can be used to limit the peak current drawn by the boost converter. The relationship of R_{EXT} to I_{LIM} is approximated using:

$$R_{\text{EXT}} = \left(K \frac{V_{\text{REF}}}{I_{\text{LIM}}} \right) R_{\text{INT}} \quad (4)$$

where I_{LIM} is the current limit set by R_{EXT} , $K = 10500$, $V_{\text{REF}} = 1.35$ V and $R_{\text{INT}} = 60$ Ω.

3.6.4 Boost Inductor Selection

Inductor selection plays a critical role in the performance of the DRV2667. The range of recommended inductor values is 3.3 μH to 22 μH. When a larger inductance is chosen, the DRV2667 boost converter automatically runs at a lower switching frequency and incurs less switching losses. The larger inductors; however, may also have a higher equivalent series resistance (ESR), which increases the parasitic inductor losses. Smaller inductances generally have higher saturation currents; therefore, they are better suited for maximizing the output current of the boost converter. [Table 10](#) lists several sample inductors that provide adequate performance.

Table 10. Boost Converter Inductor Selection

Manufacturer	Part Number	DCR (Ω)	Inductance (μH)	ISAT (A)	R_{EXT} (Ω)	I_{LIM} (A)
Coilcraft	LPS4018-332MLB	0.08	3.3	1.9	7.32 k	1.9
Coilcraft	LPS4018-472MLB	0.125	4.7	1.8	7.5 k	1.8
TDK	VLS3012T-3R3M1R3	0.100	3.3	1.5	9.31 k	1.5
TDK	VLS3010	0.130	3.3	1.3	11 k	1.28

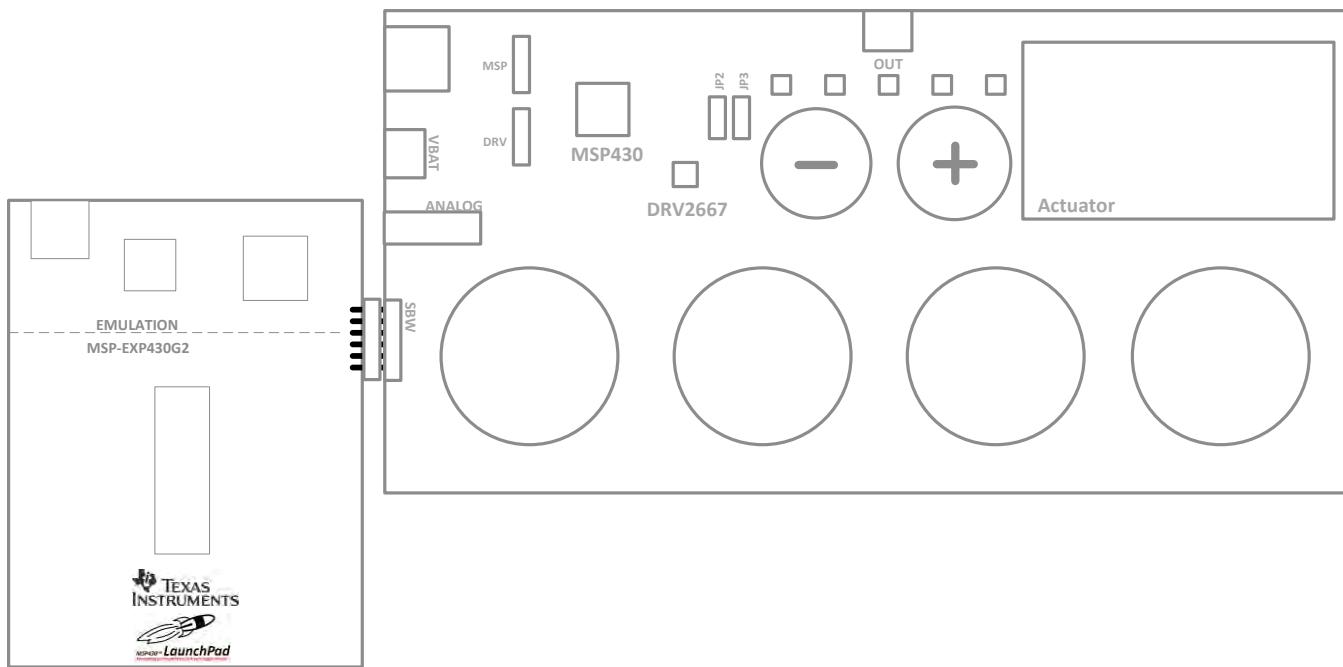
3.6.5 Boost Capacitor Selection

The boost output voltage may be programmed as high as 105 V. A capacitor must have a voltage rating equivalent to the boost output voltage or higher. A 250-V rated, 100-nF capacitor of X5R or X7R type is recommended for a boost converter voltage of 105 V. The selected capacitor should have a minimum derated capacitance of 50 nF.

A rule of thumb for ceramic capacitors: the de-rated capacitance is approximately equal to the rated capacitance multiplied by one minus the applied voltage over the rated voltage.

$$C_{\text{de-rated}} = C_{\text{rated}} \left(1 - \frac{V_{\text{applied}}}{V_{\text{rated}}}\right) \quad (5)$$

For example, when 50 V is applied to a 100-V rated capacitor, the capacitance will decrease by about 50%. Most capacitor vendors provide a capacitance versus voltage curve for reference.


4 MSP430 Control and Firmware

The DRV2667EVM-CT is controlled by a programmable MSP430. This section contains information for programming and controlling the board using the MSP430.

4.1 **Modifying and Loading Firmware**

The MSP430 firmware on the DRV2667EVM-CT can be modified or reprogrammed to create new haptic effects or behaviors. Find the latest firmware source code and binaries on ti.com. Follow the instructions below to modify or reprogram the DRV2667EVM-CT.

1. Purchase one of the following MSP430G2553 compatible hardware programmers:
 - MSP430 LaunchPad – MSP-EXP430G2 – this board requires the additional purchase of a header for J4 (Digi-key: ED8650-ND or Mouser: 575-500201)
 - Solder the header to J4
 - Remove jumpers TEST and RST to ensure there is no interference with the LaunchPad MSP430 (IC1).
 - MSP430-FET430UIF – this programmer requires the JTAG to Spy-Bi-Wire adapter (MSP-JTAG2SBW, if available)
2. Download and install Code Composer Studio or IAR Embedded Workbench IDE.
3. Download the DRV2667EVM-CT source code and binaries from ti.com.
4. Connect the programmer to an available USB port.
5. Connect the programmer to the SBW header on the DRV2667EVM-CT.
6. In CCS:
 - Open the project file by selecting Project→Import Existing CCS Project.
 - Select Browse and navigate to the DRV2667EVM-CT project folder, then press **OK**.
 - Select the checkbox next to the DRV2667EVM-CT project in the *Discovered projects* window and then press **Finish**.
 - Before compiling, navigate to Project→Properties→Build→MSP430 Compiler→Advanced Options→Language Options and ensure that the checkbox for *Enable support for GCC extensions* (`~-gcc`) is checked.
7. In IAR:
 - Create a new MSP430 project in IAR
 - Select the MSP430G2553 device
 - Copy the .h and .c files in the DRV2667EVM-CT project folder downloaded from ti.com into the new project directory

Figure 26. DRV2667EVM-CT LaunchPad Connection

4.2 MSP430 Pin-Out

The DRV2667EVM-CT contains an MSP430G2553 low-cost microcontroller which controls the board and contains sample haptic effects. The pin-out for the microcontroller is found in [Table 11](#).

Table 11. MSP430 Pin-Out

#	Label	Description
1	P1.1	Green LED
2	P1.2	Yellow LED
3	P1.3	Blue LED
4	P1.4	
5	P1.5	
6	P3.1	Enable LED
7	P3.0	PWM
8	NC	
9	P2.0	Button 1
10	P2.1	Button 2
11	P2.2	Button 3
12	P3.2	
13	P3.3	WLED 0
14	P3.4	WLED 1
15	P2.3	Button 4
16	P2.4	+ button
17	P2.5	- button
18	P3.5	WLED 2
19	P3.6	WLED 3
20	P3.7	WLED 4
21	P1.6/SCL	I ² C clock
22	P1.7/SDA	I ² C data
23	SBWTDIO	Spy-Bi-Wire data
24	SBWTCK	Spy-Bi-Wire clock
25	P2.7	GAIN1, feedback resistor control
26	P2.6	GAIN0, feedback resistor control
27	AVSS	Analog ground
28	DVSS	Digital ground
29	AVCC	Analog supply
30	DVCC	Digital supply
31	P1.0	Red LED
32	NC	

5 Schematic, Printed-Circuit Board Layouts, and Bill of Materials

Section 5.1 through Section 5.3 contain the schematic, printed-circuit board (PCB) layouts, and bill of materials (BOM) for this EVM.

5.1 Schematics

Figure 27 is the schematic for this EVM.

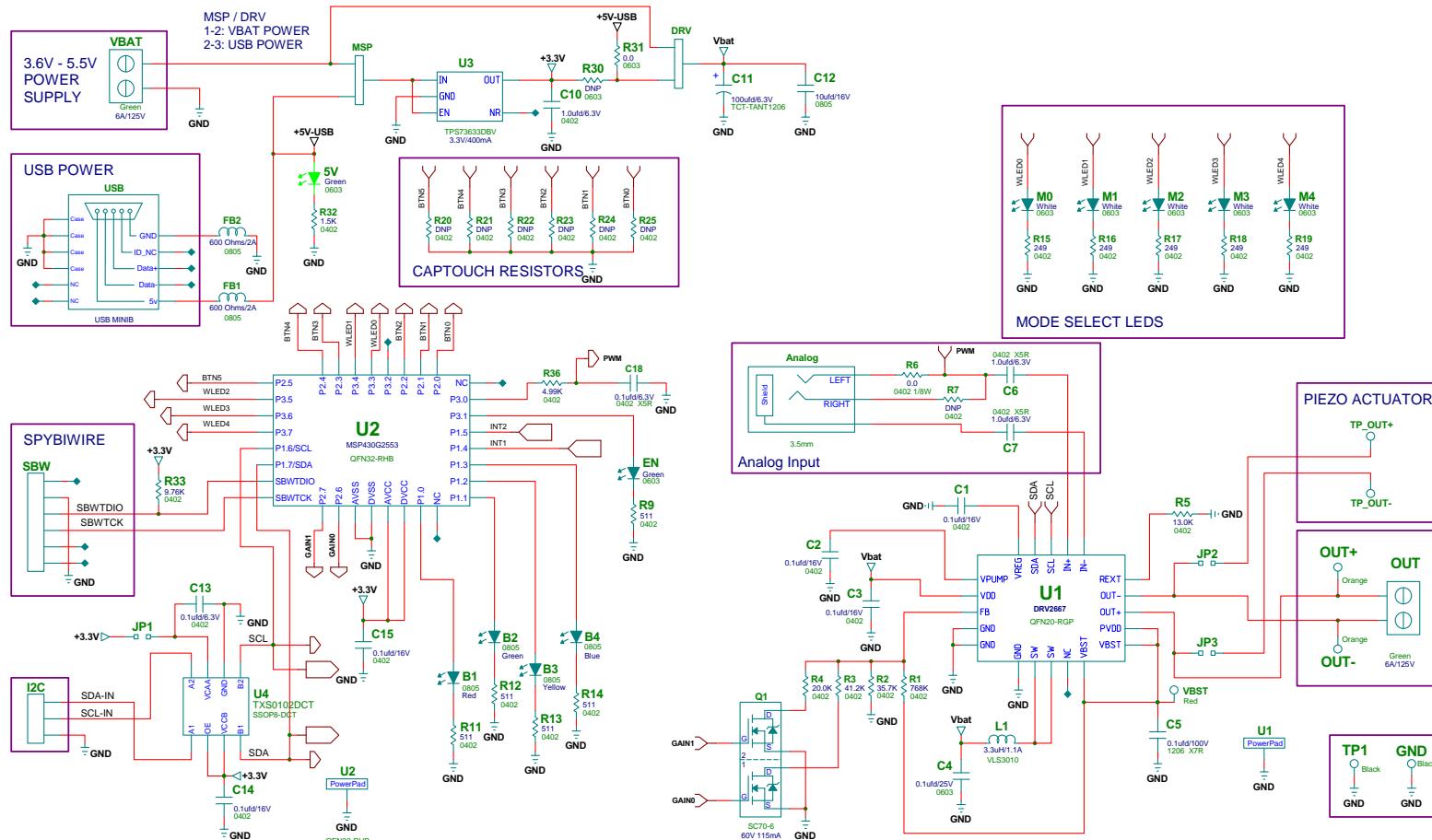


Figure 27. DRV2667EVM-CT Schematic

5.2 PCB Layouts

Figure 28 through Figure 32 are the PCB layouts for this EVM.

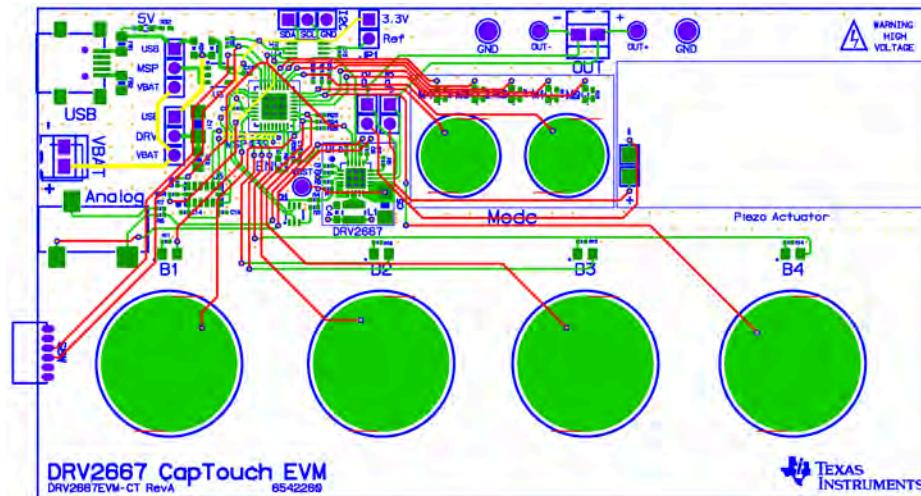


Figure 28. DRV2667EVM-CT Top Silkscreen

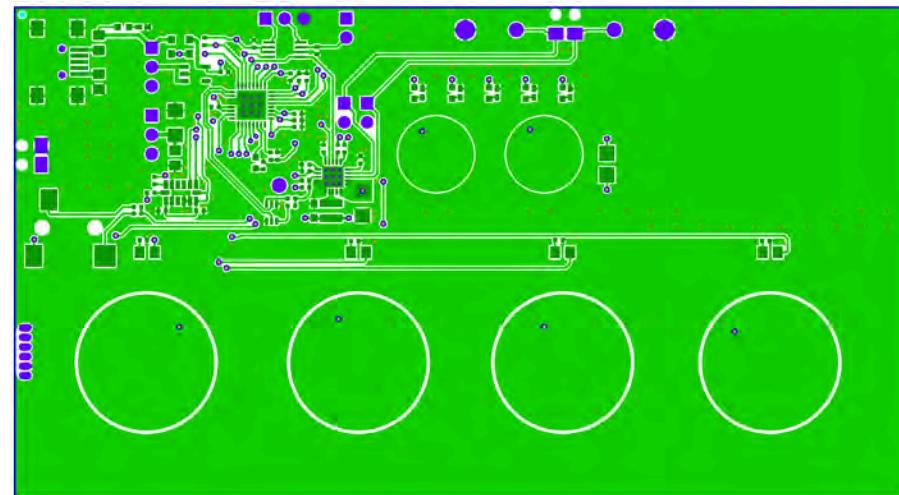


Figure 29. DRV2667EVM-CT Top Copper

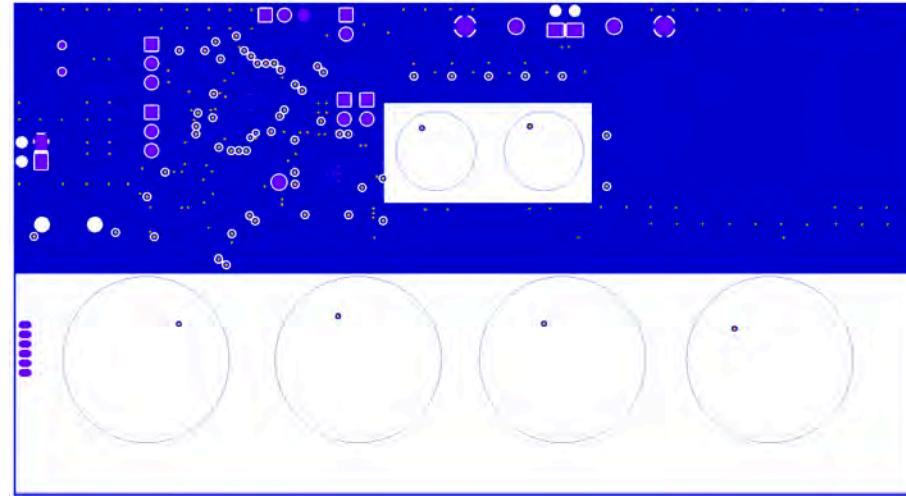


Figure 30. DRV2667EVM-CT Copper Layer 2

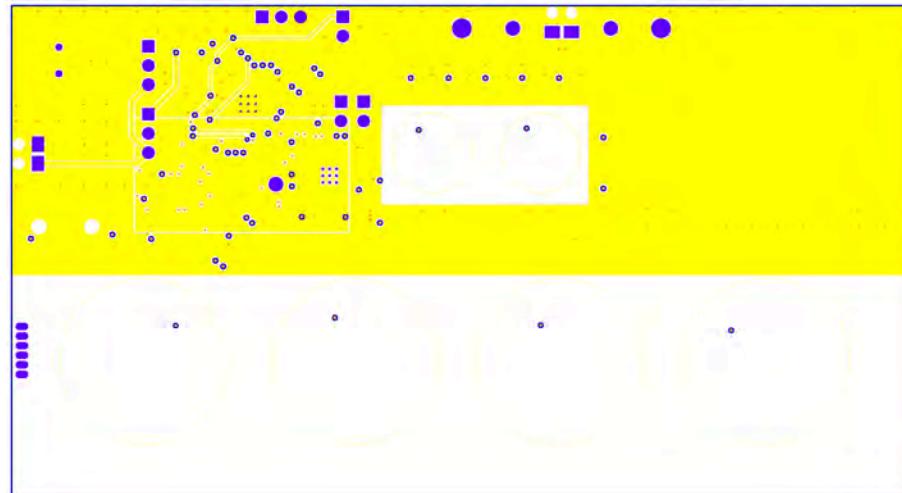
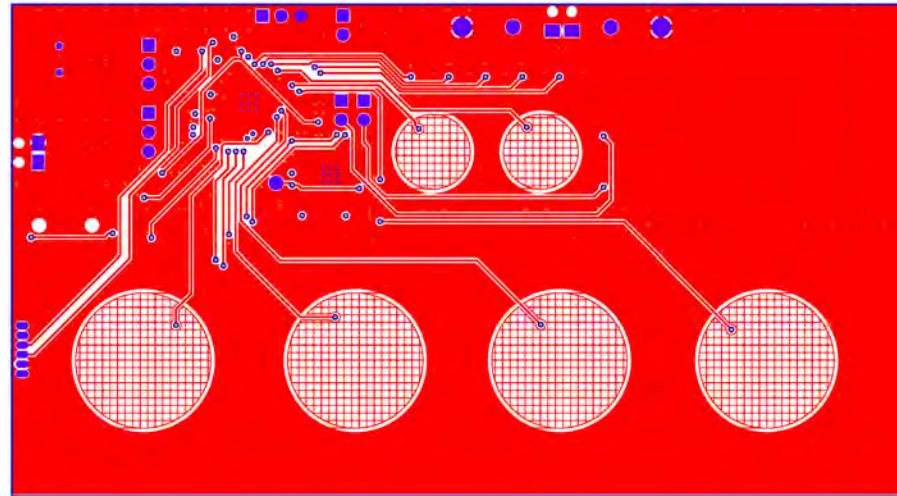



Figure 31. DRV2667EVM-CT Copper Layer 3

Figure 32. DRV2667EVM-CT Bottom Copper Layer

5.3 Bill of Materials

Table 12 is the BOM for this EVM.

Table 12. DRV2667EVM-CT Bill of Materials

Manu Part #	Quan	Reference Designators	Description	Manufacturer	Vendor	Vendor PartNum
LTST-C190KGKT	2	5V,EN	LED, GREEN, 2.0V, SMD0603, ROHS	LITE-ON INC.	DIGI-KEY	160-1435-1-ND
SJ-3523-SMT	1	Analog	JACK AUDIO-STEREO MINI(3.5MM ,3-COND SMT-RA ROHS	CUI STACK	DIGI-KEY	CP-3523SJCT-ND
SML-LXT0805SRW-TR	1	B1	LED, RED 2.0V SMD0805 ROHS	LUMEX OPTO	DIGI-KEY	67-1555-1
SML-LXT0805GW-TR	1	B2	LED, GREEN 2.0V SMD0805 ROHS	LUMEX OPTO	DIGI-KEY	67-1553-1
SML-LXT0805YW-TR	1	B3	LED, YELLOW 2.0V SMD0805 ROHS	LUMEX OPTO	DIGI-KEY	67-1554-1
LTST-C171TBKT	1	B4	LED, BLUE 3.3V SMD0805 ROHS	LITE-ON INC.	DIGI-KEY	160-1645-1-ND
GRM155R71C104KA88D	7	C1,C2,C3,C14,C15,C16,C17	CAP SMD0402 CERM 0.1UF 16V X7R 10% ROHS	MURATA	DIGI-KEY	490-3261-1-ND
TCTAL0J107M8R	1	C11	CAP TANT1206 100UF 6.3V 20% TCT SERIES ROHS	ROHM	DIGI-KEY	511-1498-1-ND
0805YD106KAT2A	1	C12	CAP SMD0805 CERM 10UF 16V X5R 10% ROHS	AVX	DIGI-KEY	478-5165-1
C1005X5R0J104K	2	C13,C18	CAP SMD0402 CERM 0.1UF 6.3V 10% X5R ROHS	TDK CORP	DIGI-KEY	445-1266-1
06033D104KAT2A	1	C4	CAP SMD0603 CERM 0.1UF 25V 10% X5R ROHS	AVX	DIGI-KEY	478-1244-1
C1206F104K1RACTU	1	C5	CAP SMD1206 CERM 0.1UF 100V 10% X7R ROHS	KEMET	DIGI-KEY	399-5113-1-ND
GRM155R60J105KE19D	3	C6,C7,C10	CAP SMD0402 CERM 1.0UF 6.3V X5R 10% ROHS	MURATA	DIGI-KEY	490-1320-1
PBC03SAAN	3	DRV,I2C,MSP	HEADER THRU MALE 3 PIN 100LS GOLD ROHS	SULLINS	DIGI-KEY	S1011E-03-ND
MPZ2012S601A	2	FB1,FB2	FERRITE BEAD SMD0805 600 Ohms 2A ROHS	TDK	DIGI-KEY	445-2206-1
5011	2	GND,TP1	PC TESTPOINT BLACK 063 HOLE ROHS	KEYSTONE ELECTRONICS	DIGI-KEY	5011K
PBC02SAAN	3	JP1,JP2,JP3	HEADER THRU MALE 2 PIN 100LS GOLD ROHS	SULLINS	DIGI-KEY	S1011E-02
VLS3010ET-3R3M	1	L1	POWER NDUCTOR SMT VLS SHIELDED 3.3uH 156mOHMS 1.1A ROHS	TDK CORP.	DIGI-KEY	445-6656-1-ND
LNJ037X8ARA	5	M0,M1,M2,M3,M4	LED, WHITE 2.9V SMD0805 ROHS	PANASONIC	DIGI-KEY	LNJ037X8ARACT-ND
1725656	2	OUT,VBAT	TERMINAL BLOCK MPT COMBICON 2PIN 6A/125V GREEN 100LS ROHS	PHOENIX CONTACT	DIGI-KEY	277-1273
5003	2	OUT+,OUT-	PC TESTPOINT, ORANGE, ROHS	KEYSTONE ELECTRONICS	DIGI-KEY	5003K
2N7002DW	1	Q1	N CHANNEL FET ENHANCEMENT MODE 60V 115mA SC70-6 ROHS	FAIRCHILD	DIGI-KEY	2N7002DWCT-ND
RC0402FR-07768KL	1	R1	RESISTOR SMD0402 THICK FILM 768K OHM 1% 1/16W ROHS	YAGEO	DIGI-KEY	311-768KLRCT-ND
ERJ-2RKF2490X	5	R15,R16,R17,R18,R19	RESISTOR,SMT,0402,249 OHM,1%,1/16W	Panasonic	DIGI-KEY	P249LTR-ND
CRCW040235K7FKED	1	R2	RESISTOR SMD0402 35.7K OHMS 1% 1/16W ROHS	VISHAY/DALE	DIGI-KEY	541-35.7KLCT-ND
R0402_DNP	6	R20,R21,R22,R23,R24,R25	R0402_DNP			
RMCF0402FT41K2	1	R3	RESISTOR SMD0402 41.2K OHMS 1% 1/16W ROHS	STACKPOLE ELECTRONICS	DIGI-KEY	RMCF0402FT41K2CT-ND
R0603_DNP	1	R30	R0603_DNP			
RMCF0603ZT0R00	1	R31	RESISTOR SMD0603 ZERO OHMS 1/10W ROHS	STACKPOLE ELECTRONICS	DIGI-KEY	RMCF0603ZT0R00CT-ND
ERJ-2GEJ152	1	R32	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,1.5K	Panasonic		
ERJ-2RKF9761X	1	R33	RESISTOR SMD0402 THICK FILM 9.76K OHMS 1/10W 1% ROHS	PANASONIC	DIGI-KEY	P9.76KLCT-ND
ERJ-2RKF4991X	1	R36	RESISTOR SMD0402 4.99K 1%,1/16W ROHS	PANASONIC	DIGI-KEY	P4.99KLCT-ND

Table 12. DRV2667EVM-CT Bill of Materials (continued)

Manu Part #	Quan	Reference Designators	Description	Manufacturer	Vendor	Vendor PartNum
CRCW040220K0FKED	1	R4	RESISTOR SMT 0402 1% 1/16W 20.0K ROHS	VISHAY	DIGI-KEY	541-20.0KLCT
CRCW040213K0FKED	1	R5	RESISTOR SMD0402 13.0K OHMS 1% 1/16W ROHS	VISHAY	DIGI-KEY	541-13.0KLCT-ND
CRCW04020000Z0ED	3	R6,R34,R35	ZERO OHM JUMPER SMT 0402 0 OHM 1/16W,5% ROHS	VISHAY	DIGI-KEY	541-0.0JCT
R0402_DNP	1	R7	R0402_DNP			
RC0402FR-07511RL	5	R9,R11,R12,R13,R14	RESISTOR SMD0402 THICK FILM 511 OHMS 1% 1/16W ROHS	YAGEO	DIGI-KEY	311-511LRCT-ND
LPPB061NGCN-RC	1	SBW	HEADER THRU FEMALE 1X6-RA 50LS GOLD ROHS	SULLINS	DIGI-KEY	S9010E-06
DRV2667RGP	1	U1	PIEZO HAPTIC DRIVER WITH DIG FRONT END QFN20-RGP ROHS	TEXAS INSTRUMENTS	TEXAS INSTRUMENTS	DRV2667RGP
MSP430G2553IRHB32T	1	U2	MIXED SIGNAL MICRO 16KB FLASH 512B RAM QFN32-RHB ROHS	TEXAS INSTRUMENTS	MOUSER	695-P430G2553IRHB32T
TPS73633MDBVREP	1	U3	VOLT REG 3.3V 400MA LDO CAP FREE NMOS SOT23-DBV5 ROHS	TEXAS INSTRUMENTS	DIGI-KEY	296-21283-1
TXS0102DCTR	1	U4	2-BIT BIDIR LEVEL TRANSLATOR SSOP8-DCT ROHS	TEXAS INSTRUMENTS	DIGI-KEY	296-21978-1
ADXL345BCCZ-RL7	1	U5	DIGITAL ACCELEROMETER SPI/I2C CC-14-1 ROHS	ANALOG DEVICES	DIGI-KEY	ADXL345BCCZ-RL7CT-ND
UX60-MB-5ST	1	USB	JACK USB MINIB SMT-RA 5PIN ROHS	HIROSE	DIGI-KEY	H2959CT
TP5000	1	VBST	PC TESTPOINT, RED, ROHS	KEYSTONE ELECTRONICS	DIGI-KEY	5000K
PHAT423535XX	1	Actuator	PIEZO Vibration Actuator	Samsung Electro-Mechanics	-	-

EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs **not** subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

【Important Notice for Users of EVMs for RF Products in Japan】

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

<http://www.tij.co.jp>

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】

本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

<http://www.tij.co.jp>

EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.
4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com