


## Short Distance Proximity/Ambient Light Sensor with I<sup>2</sup>C Bus Interface



22296



22297

### DESCRIPTION

VCNL4000 is a fully integrated proximity and ambient light digital 16-bit resolution sensor in a miniature lead less package (LLP) for surface mounting. It includes a signal processing IC and supports an easy to use I<sup>2</sup>C bus communication interface.

### FEATURES

- Package type: surface mount
- Dimensions (L x W x H in mm): 3.95 x 3.95 x 0.75
- Integrated module with ambient light sensor, proximity sensor and signal conditioning IC
- Supply voltage range: 2.5 V to 3.6 V
- Communication via I<sup>2</sup>C interface
- I<sup>2</sup>C Bus H-level range: 1.7 V to 5 V
- Floor life: 168 h, MSL 3, acc. J-STD-020
- Low stand by current consumption: 1.5  $\mu$ A
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC


**RoHS**  
COMPLIANT  
**GREEN**  
(S-2008)\*\*

### PROXIMITY FUNCTION

- Built in infrared LED and photo-pin-diode for proximity function
- 16-bit effective resolution for proximity detection range ensures excellent cross talk immunity
- Programmable LED drive current from 10 mA to 200 mA (in 10 mA steps)
- Excellent ambient light suppression by signal modulation
- Proximity distance up to 200 mm

### AMBIENT LIGHT FUNCTION

- Built in ambient light photo-pin-diode with close to human eye sensitivity characteristic
- 16-bit dynamic range for ambient light detection from 0.2 lx to 13 klx
- 100 Hz and 120 Hz flicker noise rejection

### APPLICATIONS

- Proximity sensor for mobile devices (e.g. smart phones, touch phones, PDA, GPS) for touch screen locking, power saving, etc.
- Integrated ambient light function for display/keypad contrast control and dimming of mobile devices
- Proximity/optical switch for consumer, computing and industrial devices and displays
- Dimming control for consumer, computing and industrial displays

### PRODUCT SUMMARY

| PART NUMBER | OPERATING RANGE | OPERATING VOLTAGE RANGE | I <sup>2</sup> C BUS VOLTAGE RANGE | LED PULSE CURRENT <sup>(1)</sup> | AMBIENT LIGHT RANGE | AMBIENT LIGHT RESOLUTION | OUTPUT CODE              |
|-------------|-----------------|-------------------------|------------------------------------|----------------------------------|---------------------|--------------------------|--------------------------|
|             | mm              | V                       | V                                  | mA                               | lux                 | lux                      |                          |
| VCNL4000    | 1 to 200        | 2.5 to 3.6              | 1.7 to 5                           | 10 to 200                        | 0.2 to 13 000       | 0.2                      | 16 bit, I <sup>2</sup> C |

#### Note

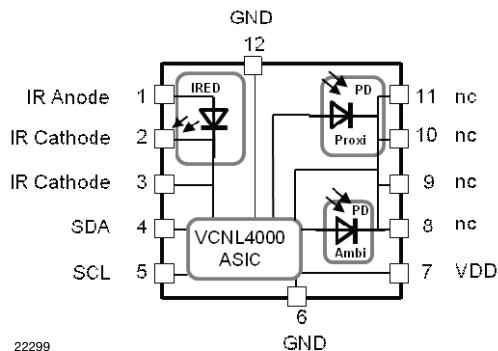
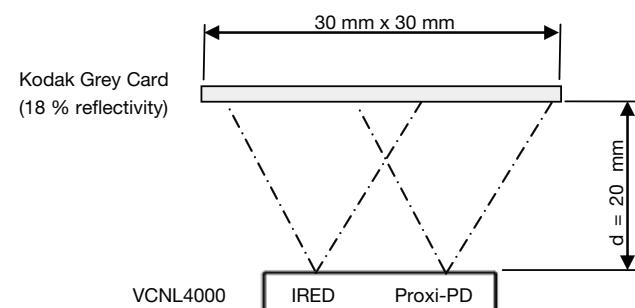
<sup>(1)</sup> Adjustable through I<sup>2</sup>C interface

\*\* Please see document "Vishay Material Category Policy": [www.vishay.com/doc/99902](http://www.vishay.com/doc/99902)

**ORDERING INFORMATION**

| ORDERING CODE | PACKAGING     | VOLUME (1)    | REMARKS                     |
|---------------|---------------|---------------|-----------------------------|
| VCNL4000-GS08 | Tape and reel | MOQ: 1800 pcs | 3.95 mm x 3.95 mm x 0.75 mm |
| VCNL4000-GS18 |               | MOQ: 7000 pcs |                             |

**Note**



(1) MOQ: minimum order quantity

**ABSOLUTE MAXIMUM RATINGS** ( $T_{amb} = 25^{\circ}\text{C}$ , unless otherwise specified)

| PARAMETER                   | TEST CONDITION                    | SYMBOL    | MIN.  | MAX.  | UNIT               |
|-----------------------------|-----------------------------------|-----------|-------|-------|--------------------|
| Supply voltage              |                                   | $V_{DD}$  | - 0.3 | 5.5   | V                  |
| Operation temperature range |                                   | $T_{amb}$ | - 40  | + 85  | $^{\circ}\text{C}$ |
| Storage temperature range   |                                   | $T_{stg}$ | - 40  | + 100 | $^{\circ}\text{C}$ |
| Total power dissipation     | $T_{amb} \leq 25^{\circ}\text{C}$ | $P_{tot}$ |       | 50    | mW                 |
| Junction temperature        |                                   | $T_j$     |       | 100   | $^{\circ}\text{C}$ |

**BASIC CHARACTERISTICS** ( $T_{amb} = 25^{\circ}\text{C}$ , unless otherwise specified)

| PARAMETER                                                      | TEST CONDITION                                      | SYMBOL    | MIN. | TYP. | MAX. | UNIT          |
|----------------------------------------------------------------|-----------------------------------------------------|-----------|------|------|------|---------------|
| Supply voltage                                                 |                                                     |           | 2.5  |      | 3.6  | V             |
| I <sup>2</sup> C Bus H-level range                             |                                                     |           | 1.7  |      | 5    | V             |
| Current consumption                                            | Standby current,<br>no IRED-operation               |           |      | 1.5  | 2    | $\mu\text{A}$ |
| Current consumption<br>proximity mode incl. IRED<br>(averaged) | 2 measurements per second,<br>IRED current 20 mA    |           |      | 4    |      | $\mu\text{A}$ |
|                                                                | 250 measurements per second,<br>IRED current 20 mA  |           |      | 500  |      | $\mu\text{A}$ |
|                                                                | 2 measurements per second,<br>IRED current 200 mA   |           |      | 31   |      | $\mu\text{A}$ |
|                                                                | 250 measurements per second,<br>IRED current 200 mA |           |      | 3.8  |      | mA            |
| Current consumption ambient<br>light mode                      | 2 measurements per second<br>averaging = 1          |           |      | 2.5  |      | $\mu\text{A}$ |
|                                                                | 8 measurements per second<br>averaging = 1          |           |      | 10   |      | $\mu\text{A}$ |
|                                                                | 2 measurements per second<br>averaging = 64         |           |      | 160  |      | $\mu\text{A}$ |
|                                                                | 8 measurements per second<br>averaging = 64         |           |      | 635  |      | $\mu\text{A}$ |
| Ambient light resolution                                       | Digital resolution (LSB count)                      |           |      | 0.2  |      | lx            |
| Ambient light output when dark                                 | $E_v = 0$<br>averaging = 64                         |           |      | 0    | 5    | counts        |
| Ambient light output                                           | $E_v = 100$ lx<br>averaging = 64                    |           |      | 500  |      | counts        |
| I <sup>2</sup> C clock rate range                              |                                                     | $f_{I2C}$ |      |      | 3400 | kHz           |

**CIRCUIT BLOCK DIAGRAM**

**TEST CIRCUIT**

**Note**

- nc must not be electrically connected
- Pads 8 to 11 are only considered as solder pads

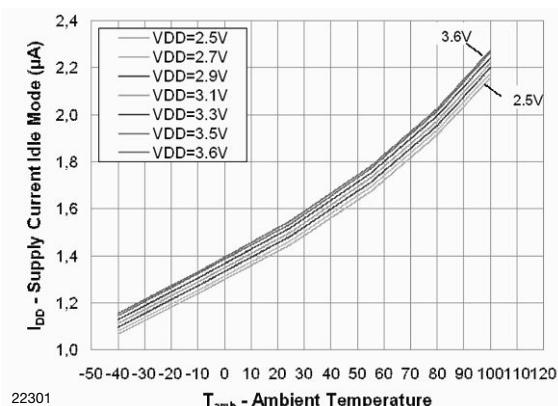

**BASIC CHARACTERISTICS** ( $T_{amb} = 25^{\circ}C$ , unless otherwise specified)


Fig. 1 - Idle Current vs. Ambient Temperature

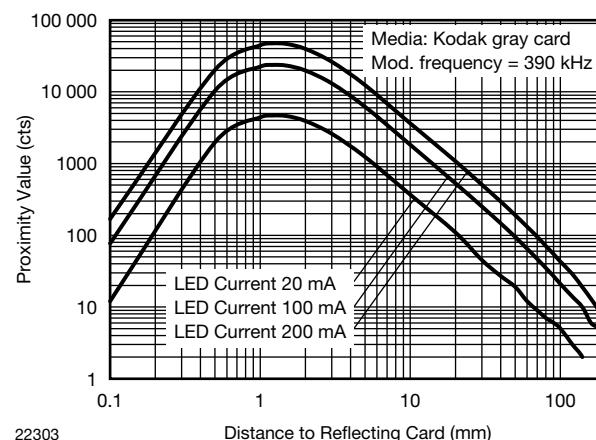



Fig. 3 - Proximity Values vs. Distance

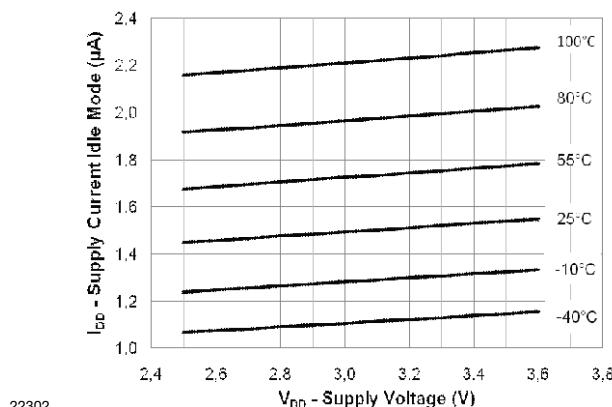
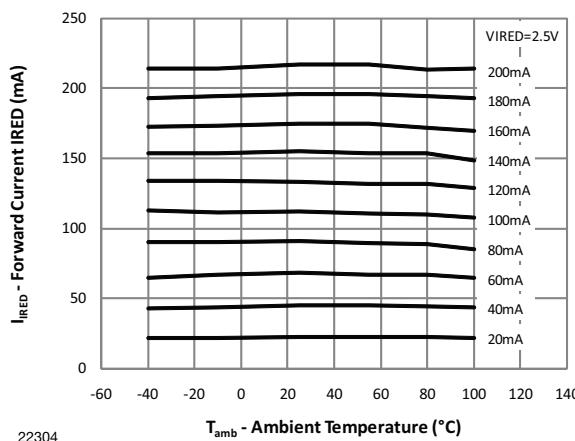



Fig. 2 - Idle Current vs. V<sub>DD</sub>


Fig. 4 - Forward Current vs. Temperature

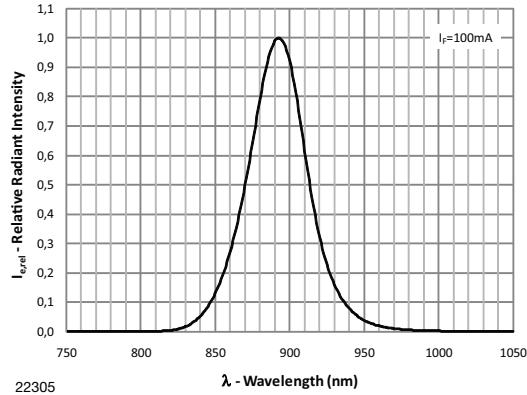



Fig. 5 - Relative Radiant Intensity vs. Wavelength

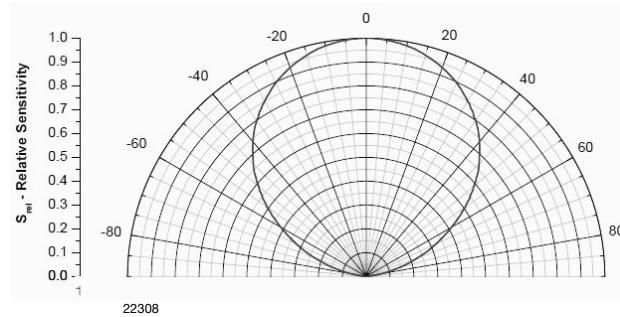



Fig. 8 - Relative Radiant Sensitivity vs. Angular Displacement

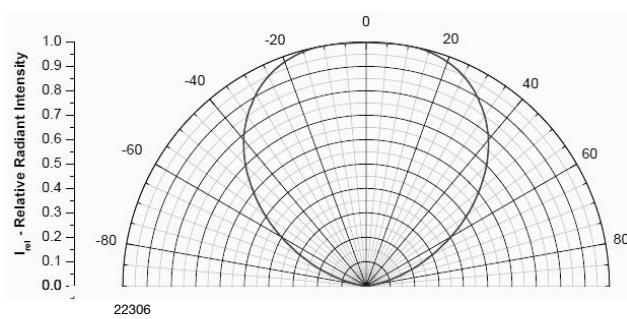



Fig. 6 - Relative Radiant Intensity vs. Angular Displacement

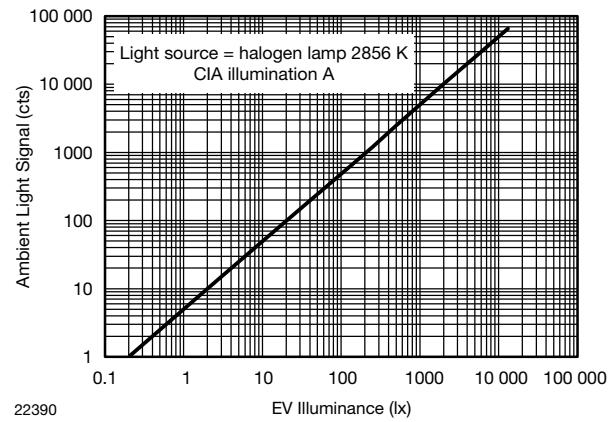



Fig. 9 - ALS readings vs. Ambient Light

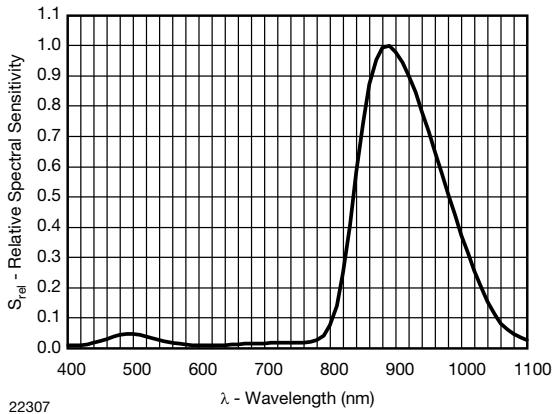



Fig. 7 - Relative Spectral Sensitivity vs. Wavelength

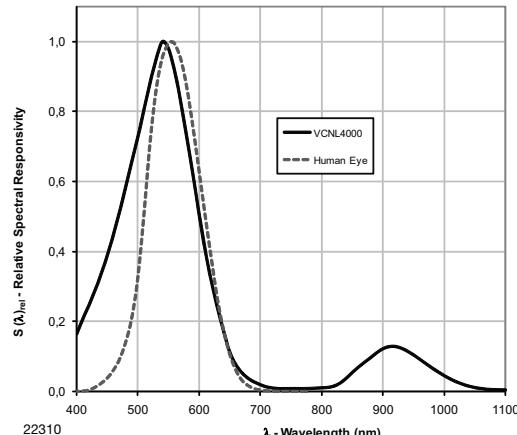



Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

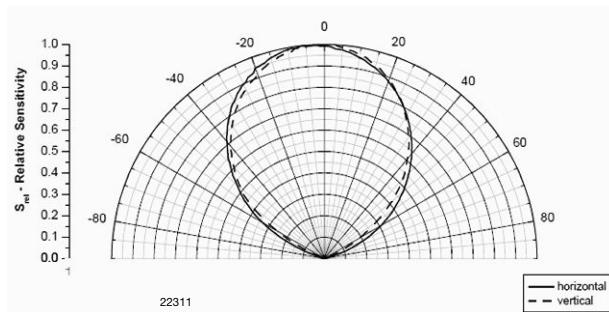



Fig. 11 - Relative Radiant Sensitivity vs. Angular Displacement

## APPLICATION INFORMATION

VCNL4000 is a cost effective solution of proximity and ambient light sensor with I<sup>2</sup>C Bus interface. The standard serial digital interface is easy to access "Proximity Signal" and "Light intensity" without complex calculation and programming by external controller.

### 1. Application Circuit

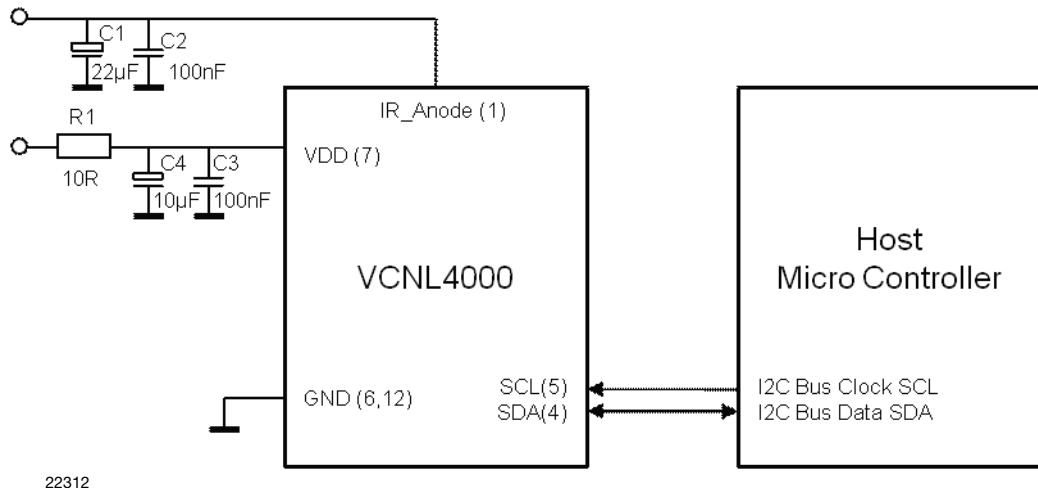



Fig. 12 - Application Circuit  
(x) = Pin Number

## 2. I<sup>2</sup>C Interface

The VCNL4000 contains twelve 8 bit registers for operation control, parameter setup and result buffering. All registers are accessible via I<sup>2</sup>C communication. Figure 13 shows the basic I<sup>2</sup>C communication with VCNL4000.

The built in I<sup>2</sup>C interface is compatible with all I<sup>2</sup>C modes (standard, fast and high speed).

I<sup>2</sup>C H-level range = 1.7 V to 5 V.

Please refer to the I<sup>2</sup>C specification from NXP for details.

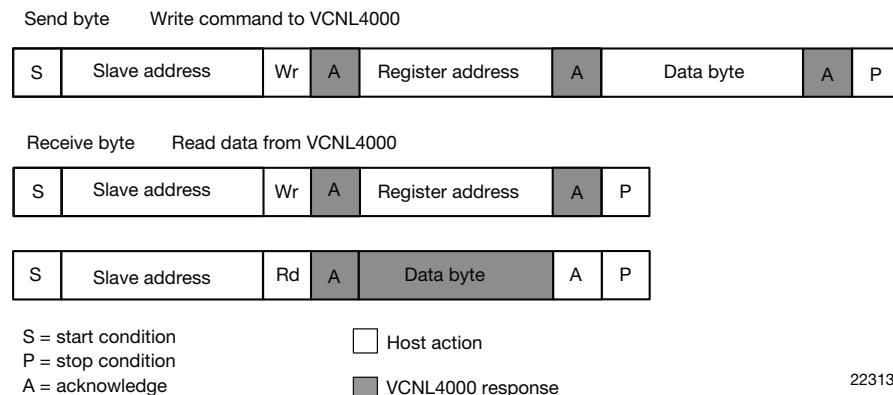



Fig. 13 - Send Byte/Receive Byte Protocol

### Device Address

The VCNL4000 has a fix slave address for the host programming and accessing selection. The predefined 7 bit I<sup>2</sup>C bus address is set to 0010 011 = 13h. The least significant bit (LSB) defines read or write mode. Accordingly the bus address is set to 0010 011x = 26h for write, 27h for read.

### Register Addresses

VCNL4000 has twelve user accessible 8 bit registers. The register addresses are 80h (register #0) to 8Bh (register #11).

## REGISTER FUNCTIONS

### Register #0 Command Register

Register address = 80h

The register #0 is for starting ambient light or proximity measurements. This register contains 2 flag bits for data ready indication.

**TABLE 1 - COMMAND REGISTER #0**

| Bit 7              | Bit 6        | Bit 5                                                                                                                                                                                                                                                 | Bit 4  | Bit 3    | Bit 2 | Bit 1 | Bit 0 |
|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-------|-------|-------|
| Config log         | als data rdy | Prox. data rdy                                                                                                                                                                                                                                        | als od | Prox. od | N/A   | N/A   | N/A   |
| <b>Description</b> |              |                                                                                                                                                                                                                                                       |        |          |       |       |       |
| Config log         |              | Read only bit. Value = 1                                                                                                                                                                                                                              |        |          |       |       |       |
| als data rdy       |              | Read only bit. Value = 1 when ambient light measurement data is available in the result registers. This bit will be reset when one of the corresponding result registers (reg #5, reg #6) is read.                                                    |        |          |       |       |       |
| Prox. data rdy     |              | Read only bit. Value = 1 when proximity measurement data is available in the result registers. This bit will be reset when one of the corresponding result registers (reg #7, reg #8) is read.                                                        |        |          |       |       |       |
| als od             |              | R/W bit. Starts a single on-demand measurement for ambient light. If averaging is enabled, starts a sequence of readings and stores the averaged result. Result is available at the end of conversion for reading in the registers #5(HB) and #6(LB). |        |          |       |       |       |
| Prox. od           |              | R/W bit. Starts a single on-demand measurement for proximity. Result is available at the end of conversion for reading in the registers #7(HB) and #8(LB).                                                                                            |        |          |       |       |       |

With setting bit 3 and bit 4 at the same write command, a simultaneously measurement of ambient light and proximity is done.

**Register #1 Product ID Revision Register**

Register address = 81h. This register contains information about product ID and product revision.  
Register data value of current revision = 11h.

| <b>TABLE 2 - PRODUCT ID REVISION REGISTER #1</b> |                           |       |       |             |       |       |       |  |  |  |  |
|--------------------------------------------------|---------------------------|-------|-------|-------------|-------|-------|-------|--|--|--|--|
| Bit 7                                            | Bit 6                     | Bit 5 | Bit 4 | Bit 3       | Bit 2 | Bit 1 | Bit 0 |  |  |  |  |
| Product ID                                       |                           |       |       | Revision ID |       |       |       |  |  |  |  |
| <b>Description</b>                               |                           |       |       |             |       |       |       |  |  |  |  |
| Product ID                                       | Read only bits. Value = 1 |       |       |             |       |       |       |  |  |  |  |
| Revision ID                                      |                           |       |       |             |       |       |       |  |  |  |  |

**Register #2 without Function in Current Version**

Register address = 82h.

**Register #3 LED Current Setting for Proximity Mode**

Register address = 83h. This register is to set the LED current value for proximity measurement.

The value is adjustable in steps of 10 mA from 0 mA to 200 mA.

This register also contains information about the used device fuse program ID.

| <b>TABLE 3 - IR LED CURRENT REGISTER #3</b> |                                                                                                                                                                                                            |       |       |                      |       |       |       |  |  |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------------------|-------|-------|-------|--|--|--|--|
| Bit 7                                       | Bit 6                                                                                                                                                                                                      | Bit 5 | Bit 4 | Bit 3                | Bit 2 | Bit 1 | Bit 0 |  |  |  |  |
| Fuse prog ID                                |                                                                                                                                                                                                            |       |       | IR LED current value |       |       |       |  |  |  |  |
| <b>Description</b>                          |                                                                                                                                                                                                            |       |       |                      |       |       |       |  |  |  |  |
| Fuse prog ID                                | Read only bits.<br>Information about fuse program revision used for initial setup/calibration of the device.                                                                                               |       |       |                      |       |       |       |  |  |  |  |
| IR LED current value                        | R/W bits. IR LED current = Value (dec.) x 10 mA.<br>Valid Range = 0 to 20d. e.g. 0 = 0 mA, 1 = 10 mA, ..., 20 = 200 mA (2 = 20 mA = DEFAULT)<br>LED Current is limited to 200 mA for values higher as 20d. |       |       |                      |       |       |       |  |  |  |  |

**Register #4 Ambient Light Parameter Register**

Register address = 84h.

| <b>TABLE 4 - AMBIENT LIGHT PARAMETER REGISTER #4</b> |                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                          |                                                        |       |       |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------|--------------------------------------------------------|-------|-------|--|--|--|
| Bit 7                                                | Bit 6                                                                                                                                                                                                                                                                                                                                                                                                         | Bit 5 | Bit 4 | Bit 3                    | Bit 2                                                  | Bit 1 | Bit 0 |  |  |  |
| Cont. conv. mode                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | Auto offset compensation | Averaging function<br>(number of measurements per run) |       |       |  |  |  |
| <b>Description</b>                                   |                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                          |                                                        |       |       |  |  |  |
| Bit 7<br>Cont. conversion mode                       | R/W bit. Continuous conversion mode.<br>Enable = 1; Disable = 0 = DEFAULT<br>This function can be used for performing faster ambient light measurements. Please refer to the application information chapter 3.3 for details about this function.                                                                                                                                                             |       |       |                          |                                                        |       |       |  |  |  |
| Bit 3<br>Auto offset compensation                    | R/W bit. Automatic offset compensation.<br>Enable = 1 = DEFAULT Disable = 0<br>In order to compensate a technology, package or temperature related drift of the ambient light values there is a built in automatic offset compensation function.<br>With active auto offset compensation the offset value is measured before each ambient light measurement and subtracted automatically from actual reading. |       |       |                          |                                                        |       |       |  |  |  |
| Bit 0 to bit 2<br>Averaging function                 | R/W bits. Averaging function.<br>Bit values sets the number of single conversions done during one measurement cycle. Result is the average value of all conversions.<br>Number of conversions = $2^{\text{decimal\_value}}$ e.g. 0 = 1 conv., 1 = 2 conv, 2 = 4 conv., ..., 7 = 128 conv.<br>DEFAULT = 32 conv.                                                                                               |       |       |                          |                                                        |       |       |  |  |  |

**Register #5 and #6 Ambient Light Result Register**

Register address = 85h and 86h. These registers are the result registers for ambient light measurement readings. The result is a 16 bit value. The high byte is stored in register #5 and the low byte in register #6.

**TABLE 5 - AMBIENT LIGHT RESULT REGISTER #5**

| Bit 7                                                                | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| <b>Description</b>                                                   |       |       |       |       |       |       |       |
| Read only bits. High byte (15:8) of ambient light measurement result |       |       |       |       |       |       |       |

**TABLE 6 - AMBIENT LIGHT RESULT REGISTER #6**

| Bit 7                                                              | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| <b>Description</b>                                                 |       |       |       |       |       |       |       |
| Read only bits. Low byte (7:0) of ambient light measurement result |       |       |       |       |       |       |       |

**Register #7 and #8 Proximity Measurement Result Register**

Register address = 87h and 88h. These registers are the result registers for proximity measurement readings. The result is a 16 bit value. The high byte is stored in register #7 and the low byte in register #8.

**TABLE 7 - PROXIMITY RESULT REGISTER #7**

| Bit 7                                                            | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| <b>Description</b>                                               |       |       |       |       |       |       |       |
| Read only bits. High byte (15:8) of proximity measurement result |       |       |       |       |       |       |       |

**TABLE 8 - PROXIMITY RESULT REGISTER #8**

| Bit 7                                                          | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| <b>Description</b>                                             |       |       |       |       |       |       |       |
| Read only bits. Low byte (7:0) of proximity measurement result |       |       |       |       |       |       |       |

**Register #9 Proximity Measurement Signal Frequency**

Register address = 89h.

**TABLE 9 - PROXIMITY MEASUREMENT SIGNAL FREQUENCY #9**

| Bit 7                              | Bit 6 | Bit 5                                                                                                                                                                                                                                                            | Bit 4 | Bit 3 | Bit 2 | Bit 1               | Bit 0 |  |  |
|------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|---------------------|-------|--|--|
| N/A                                |       |                                                                                                                                                                                                                                                                  |       |       |       | Proximity frequency |       |  |  |
| <b>Description</b>                 |       |                                                                                                                                                                                                                                                                  |       |       |       |                     |       |  |  |
| Bit 0 and 1<br>Proximity frequency |       | R/W bits. Setting the proximity IR test signal frequency. The proximity measurement is using a square IR signal as measurement signal. Four different values are possible:<br>00 = 3.125 MHz<br>01 = 1.5625 MHz<br>02 = 781.25 kHz (DEFAULT)<br>03 = 390.625 kHz |       |       |       |                     |       |  |  |

**Register #10 Proximity Modulator Timing Adjustment**

Register address = 8Ah.

| <b>TABLE 10 - PROXIMITY MODULATOR TIMING ADJUSTMENT #10</b> |                                                                                                                                                                                                                                                                                                                           |       |       |       |       |                      |       |  |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|----------------------|-------|--|--|--|
| Bit 7                                                       | Bit 6                                                                                                                                                                                                                                                                                                                     | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1                | Bit 0 |  |  |  |
| Modulation delay time                                       |                                                                                                                                                                                                                                                                                                                           |       | N/A   |       |       | Modulation dead Time |       |  |  |  |
| <b>Description</b>                                          |                                                                                                                                                                                                                                                                                                                           |       |       |       |       |                      |       |  |  |  |
| Modulation delay time                                       | R/W bits. Setting a delay time between IR LED signal and IR input signal evaluation.<br>This function is for compensation of delays from IR LED and IR photo diode.<br>Also in respect to the possibility for setting different proximity signal frequency.<br>Correct adjustment is optimizing measurement signal level. |       |       |       |       |                      |       |  |  |  |
| Modulation dead Time                                        | R/W bits. Setting a dead time in evaluation of IR signal at the slopes of the IR signal.<br>This function is for reducing of possible disturbance effects.<br>This function is reducing signal level and should be used carefully.                                                                                        |       |       |       |       |                      |       |  |  |  |

**Note**

- The settings for best performance will be provided by Vishay. With first samples this is evaluated to: delay time = 4 and dead time = 1, with that register #10 should be programmed with: 129 (dez.)

**Register #11 Ambient IR Light Level Register**

Register address = 8Bh.

This register is not intended to be used by customer.

**3. IMPORTANT APPLICATION HINTS AND EXAMPLES**
**3.1 Receiver standby mode**

In standby mode the receiver has the lowest current consumption of about 1.6  $\mu$ A. In this mode only the I<sup>2</sup>C interface is active. This is always valid, when there are no measurement demands for proximity and ambient light executed. Also the current sink for the IR-LED is inactive, so there is no need for changing register #3 (IR LED current).

**3.2 Data Read**

In order to get a certain register value, the register has to be addressed without data like shown in the following scheme. After this register addressing, the data from the addressed register is written after a subsequent read command.

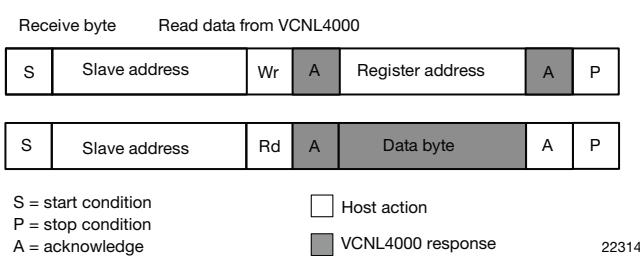



Fig. 14 - Send Byte/Receive Byte Protocol

The stop condition between these write and read sequences is not mandatory. It works also with a repeated start condition.

**Note**

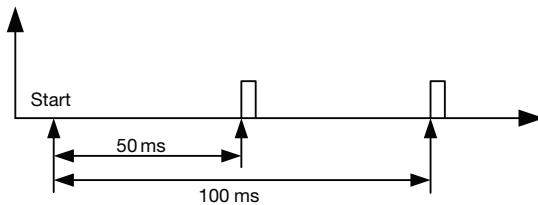
- For reading out 2 (or more) subsequent registers like the result registers, it is not necessary to address each of the registers separately. After one read command the internal register counter is increased automatically and any subsequent read command is accessing the next register.

Example: read register #5 and #6:

Addressing: command 26h 85h

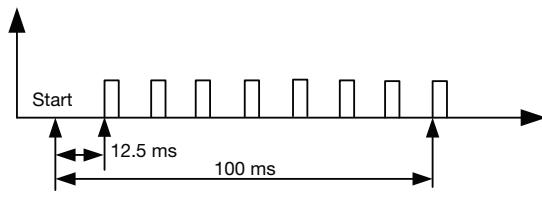
Read register #5: command ≥ 27h

Read register #6: command ≥ 27h


### 3.3 Continuous Conversion Mode in Ambient Light Measurement

In the following is a detail description of the function “continuous conversion” (bit 7 of register #4)

#### Standard mode (bit 7 of reg #4 = 0):


In standard mode the ambient light measurement is done during a fixed time frame of 100 ms. The single measurement itself takes actually only appr. 300  $\mu$ s.

The following figures show examples of this measurement timing in standard mode using averaging function 2 and 8 as examples for illustration (possible values up to 128).



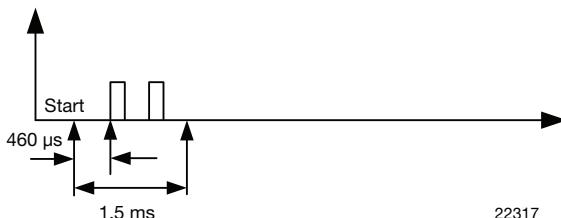
22315

Fig. 15 - Ambient Light Measurement with Averaging = 2;  
Final Measurement Result = Average of these 2 Measurements



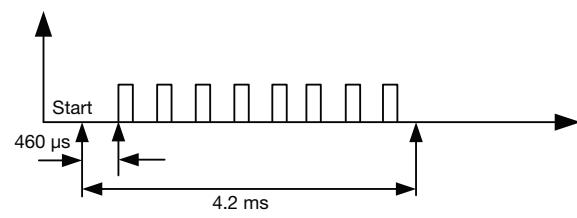
22316

Fig. 16 - Ambient Light Measurement with Averaging = 8;  
Final Measurement Result = Average of these 8 Measurements


#### Note

- $\geq$  Independent of setting of averaging the result is available only after 100 ms.

#### Continuous conversion mode (bit7 of reg #4 = 1):


In continuous conversion mode the single measurements are done directly subsequent after each other.

See following examples in figure 17 and 18



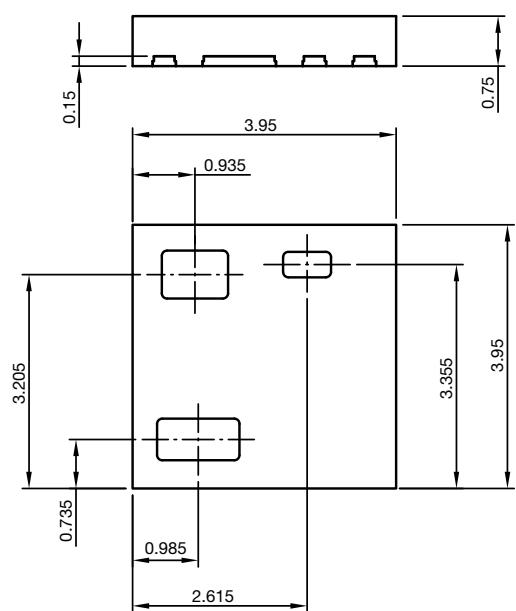
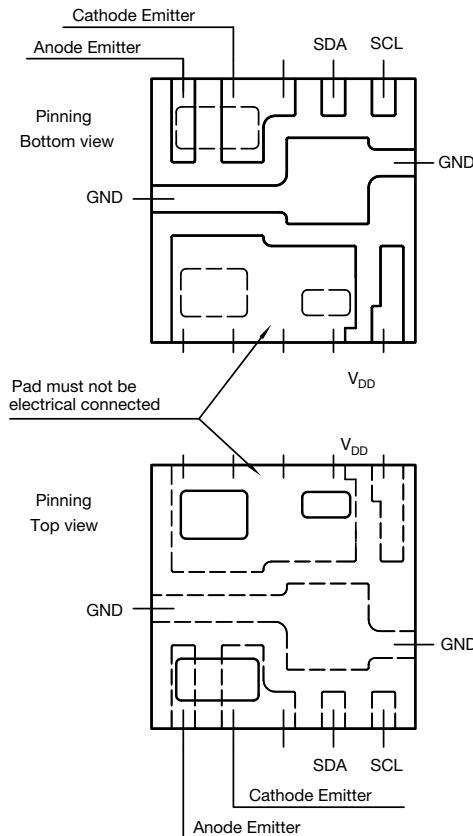
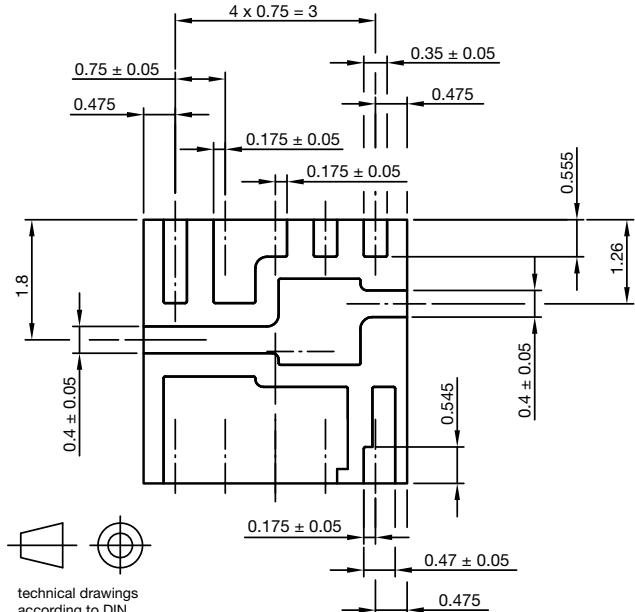
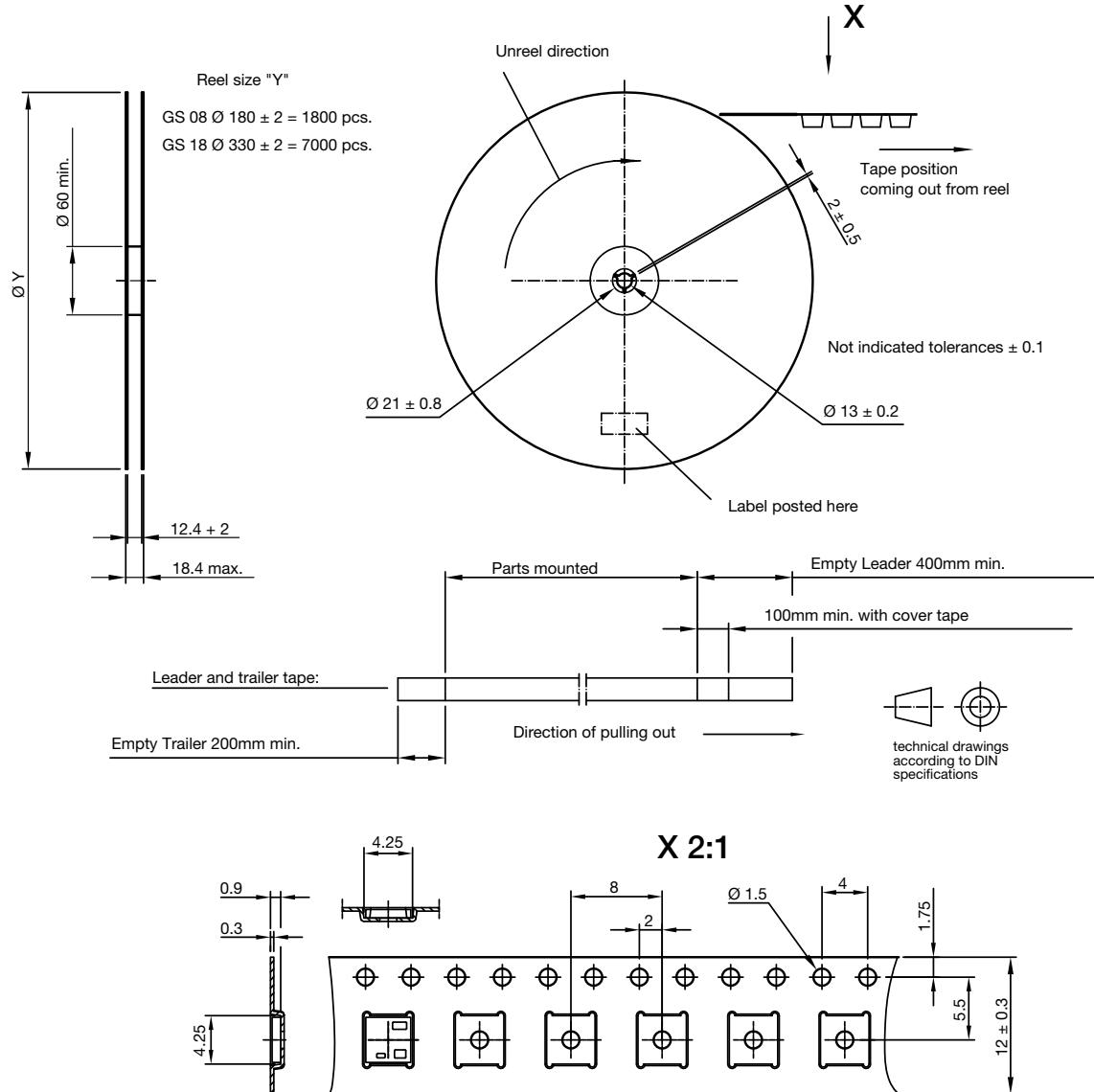



22317

Fig. 17 - Ambient Light Measurement with Averaging = 2;  
using Continuous Conversion Mode



22318

Fig. 18 - Ambient Light Measurement with Averaging = 8;  
using Continuous Conversion Mode


**PACKAGE DIMENSIONS** in millimeters


Drawing-No.: 6.550-5302.01-4

Issue: prel; 16.02.10

22320

Not indicated tolerances ± 0.1

**TAPE AND REEL DIMENSIONS** in millimeters

Drawing-No.: 9.800-510301-4

Issue: prel; 02.12.09

22319

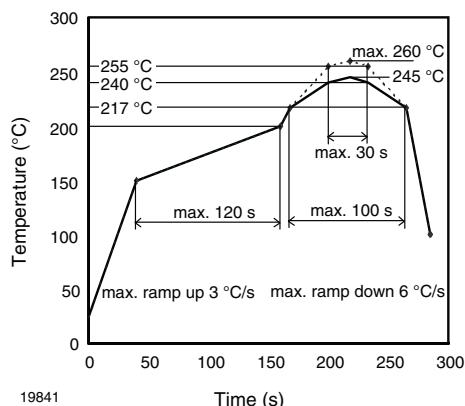

**SOLDER PROFILE**


Fig. 19 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

**DRYPACK**

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

**FLOOR LIFE**

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

Floor life: 168 h

Conditions:  $T_{amb} < 30 \text{ }^{\circ}\text{C}$ , RH < 60 %

Moisture sensitivity level 3, acc. to J-STD-020.

**DRYING**

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40  $^{\circ}\text{C}$  (+ 5  $^{\circ}\text{C}$ ), RH < 5 %.

## Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.